Advertisement

Polarization-Multiplexed Quadrature Amplitude Modulation for Continuous-Variable Quantum Key Distribution

  • Ying Guo
  • Xiaoxue Wang
  • Ling Zhang
  • Duan Huang
Article
  • 41 Downloads

Abstract

We propose a continuous-variable quantum key distribution (CV-QKD) scheme by using polarization-multiplexing (Pol-Mux) technique. As an effective way to promote spectral efficiency, quadrature amplitude modulation (QAM) has ability to provide substantial capacity. However, it may encounter the problem when discriminated symbols with increasing d. The star-QAM with different ring radii is utilized to tolerate greater phase jitter and improve the stability. In the proposed scheme, an optical phase reference signal is multiplexed to the quantum signal through the optical fiber to provide phase reference for local oscillator signal, which enables secure key distribution. However, the quadrature amplitude modulation could obtain the high modulation efficiency at the cost of increased complexity. And we utilize the low-density parity-check (LDPC) codes with little computational cost reconciliation scheme to deal with the extra data. From the numerical results, the proposed scheme achieves a good performance in terms of the key generation rate. The secure bound is derived with the presence of a Gaussian channel and the analysis shows the performance of the proposed scheme can be further improved by altering the effective parameters.

Keywords

Continuous-variable quantum key distribution Polarization-multiplexed QAM LDPC 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529).

References

  1. 1.
    Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595–604 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Samuel, L.B., Peter, V.L.: Quantum information with continuous variables. Rev. Mod. Phys. 77(7), 513–577 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Tamaki, K., Koashi, M., Imoto, N.: Unconditionally secure key distribution based on two nonorthogonal states. Phys. Rev. Lett. 90(16), 167904 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. New York, pp. 175–179 (1984)Google Scholar
  5. 5.
    Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon 4(10), 686–689 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Huang, P., He, G., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87 (1), 530–537 (2013)CrossRefGoogle Scholar
  9. 9.
    Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95(1), 012310 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Y., Shi, R.H., Zeng, G.H.: Secure networking quantum key distribution schemes with Greenberger–Horne–Zeilinger states. Phys. Scr. 81(4), 045006 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous variable quantum cryptography using two-way quantum communication. Nat. Phys. 4 (9), 726–730 (2006)CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Fang, J., He, G.: Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers. Phys. Rev. A 86(2), 022338 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Fang, J., Huang, P., Zeng, G.H.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89(2), 022315 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography. Phys. Rev. Lett. 101(20), 200504 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Guo, Y., Xie, C., Liao, Q., Zhao, W., Zeng, G., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Jing, J., Zhang, J., Yan, Y., Zhao, F., Xie, C., Peng, K.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90(16), 167903 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Guo, Y., Liao, Q., Huang, D., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95(3), 042326 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Xuan, Q.D., Zhang, Z., Voss, P.L.: A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. Opt. Express 17(26), 24244 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator ”locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)Google Scholar
  22. 22.
    Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.H.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New. J. Phys. 17(4), 043027 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Lin, D., Huang, D., Huang, P., Zeng, G.H.: High performance reconciliation for continuous-variable quantum key distribution with LDPC code. Int. J. Quantum. Inf. 13(2), 1550010 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhuang, Q., Zhang, Z., Dove, J., Wong, F.N.C., Shapiro, J.H.: Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates. Phys. Rev. A 94(1), 012322 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Huang, P., Lin, D.K., Huang, D., Zeng, G.H.: Security of continuous-variable quantum key distribution with imperfect phase compensation. Int. J. Theor. Phys. 54 (8), 2613–2622 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Corvaja, R.: Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection. Phys. Rev. A 95(2), 022315 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Martinez-Mateo, J., Pacher, C., Peev, M., Ciurana, A., Martin, V.: Demystifying the information reconciliation protocol cascade. Quantum Inf. Comput. 15(5-6), 453–477 (2014)Google Scholar
  29. 29.
    Chu, T., Jiang, X.Q., Hou, J., Wang, H.M., Kong, L.: Construction of multiple-rate LDPC codes using modified PEG. Proc. Int. Conf. Wireless Commun. Signal Processing. Nanjing, pp. 1–5 (2017)Google Scholar
  30. 30.
    Jiang, X.Q., Huang, P., Huang, D., Lin, D., Zeng, G.H.: Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A 95(2), 022318 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Jiang, X.Q., Zheng, Y., Chen, W., Wen, M., Li, J.: Two-layer LDPC codes for low complexity ML detection in GSM systems. IEEE Trans. Wirel. Commun. 7(3), 408–411 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science & EngineeringCentral South UniversityChangshaChina

Personalised recommendations