Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 201–208 | Cite as

A Model for Immune Noise Towards High-Fidelity Quantum Secure Communication

  • Dong-fen Li
  • Ming-zhe Liu
  • Jin-lian Chen
  • Ya-ming Yang
  • Daniel Adu-Gyamfi
Article
  • 14 Downloads

Abstract

In this paper, we examine unified framework of high-fidelity entangled quantum secure Communication channels under noise. We adopt system evolution density matrix to calculate the individual and average fidelity of initial states. We adjust intensity levels of noise with respect to the surroundings. Based on quantum entanglement and unitary transformation, we develop and implement a model for four types of noise that act on the quantum bits at different intensity levels. We analyze the model with quantum bits produced against the immune noise based on density matrix. Our propose model for immune noise is not only efficient and robust, but also achieves high-fidelity for secure quantum communication.

Keywords

Immune noise model Quantum secure communication Quantum fidelity Immune noise 

Notes

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities (ZYGX2014J051).

References

  1. 1.
    Huang, C.C., Farn, K.J.: A study on E-Taiwan promotion information security governance programs with E-government implementation of information security management standardization. Intern. J. Netw. Secur. 18(3), 565–578 (2016)Google Scholar
  2. 2.
    Safa, N.S., Solms, R.V., Furnell, S.: Information security policy compliance model in organizations. Comput. Secur. 56(1), 70–82 (2016)CrossRefGoogle Scholar
  3. 3.
    DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H.: Quantum information and computation. Phys. Today 48, 24–30 (1995)CrossRefGoogle Scholar
  5. 5.
    Lidar, D.A., Bacon, D., Whaley, K.B.: Concatenating decoherence-free subspaces with quantum error correcting codes. Phys. Rev. Lett. 82(22), 4556–4559 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, D.J., Qin, Z., Mao, X.F., Yang, P.L., Qin, Z.G., Wang, R.J., Smoke, G.: An efficient key generation protocol with artificial interference. IEEE Trans. Inf. Forensics Secur. 8(11), 1731–1745 (2013)CrossRefGoogle Scholar
  7. 7.
    Yu, T., Beverly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Almeida, M.P., Melo, F., HorMeyll, M., Salles, A., Walborn, S.P., SoutoRibeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316(5824), 579–582 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Adesso, G., Serafini, A., Illuminati, F.: Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence. Phys. Rev. A 73(3), 032345 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Siomau, M., Fritzsche, S.: Entanglement dynamics of three-qubit states in noisy channels. Eur. Phys. J. D 60(2), 397–403 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Siomau, M.: Entanglement dynamics of three-qubit states in local many-sided noisy channels. J. Phys. B Atomic Mol. Phys. 45(3), 035501 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86(4), 1203 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Mazhar, A.: Robustness of genuine tripartite entanglement under collective dephasing. Chin. Phys. Lett. 32(6), 060302 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Cyber SecurityChengdu University of TechnologyChengduChina
  2. 2.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations