International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 121–135 | Cite as

Quantum Handshake Beacon in Communication System Using Bidirectional Quantum Teleportation

  • Kan WangEmail author
  • Rui Cai
  • Xu-Tao Yu
  • Zai-Chen Zhang


Network security is essential for communication system. In this paper, we propose a quantum handshake beacon (QHB) protocol based on bidirectional quantum teleportation (BQT) to improve the network security. The BQT scheme for the proposed protocol is designed, including three operators: Alice, Bob and Charlie. Alice and Bob transmit an unknown qubit to each other simultaneously, while Charlie controls the trigger qubits and a Greenberger-Horne-Zeilinger (GHZ) state is shared among them. The qubits to be transmitted as handshake beacon go through different quantum gates and the corresponding unitary transformations are performed on the qubits according to the measurement outcomes. With different trigger qubits, the BQT scheme can achieve unidirectional teleportation with fidelity 1 or bidirectional teleportation with different fidelities. We analyze the fidelity of both sides in BQT with the joint probability of the trigger qubits and point out the area of fidelity over 2/3 classical teleportation limit. In addition, the QHB protocol is proposed for source station and destination station realizing handshake. We define the process of the protocol to illustrate how the protocol works. Based on the fidelity function, we analyze the feasibility of the QHB and verify that the QHB can work well within the maximal retry times in communication protocol. Compared with the unidirectional QHB, the bidirectional QHB has less system average delay.


Bidirectional quantum teleportation Handshake beacon Quantum fidelity System delay 



This work was supported by the National Natural Science Foundation of China (Grant No. 61601120, 61571105 and 61223001); China Postdoctoral Science Foundation (Grant No. 2016M591742) and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1601166C).


  1. 1.
    Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photon. 9, 641 (2015)ADSGoogle Scholar
  2. 2.
    Park, B.K., Lee, M.S., Woo, M.K., Kim, Y.-S., Han, S.-W., Moon, S.: QKD system with fast active optical path length compensation. Sci. China-Phys. Mech. Astron. 60(6), 060311 (2017)ADSGoogle Scholar
  3. 3.
    Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum Secure Direct Communication with Quantum Memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSGoogle Scholar
  4. 4.
    Bennett, C. H., Brassard, G., Crc)peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Hsu, J.-L., Chen, Y.-T., Tsai, C.-W., Hwang, T.: Quantum teleportation with remote rotation on a GHZ state. Int. J. Theor. Phys. 53(4), 1233–1238 (2014)Google Scholar
  6. 6.
    Wang, K., Yu, X.-T., Cai, X.-F., Zhang, Z.-C.: Probabilistic teleportation of arbitrary Two-Qubit quantum state via Non-Symmetric quantum channel. Entropy 20(4), 238 (2018)ADSGoogle Scholar
  7. 7.
    Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71(3), 032303 (2005)ADSGoogle Scholar
  8. 8.
    Choudhury, B.S., Dhara, A.: Simultaneous Teleportation of Arbitrary Two-qubit and Two Arbitrary Single-qubit States Using A Single Quantum Resource. Int. J. Theor. Phys. 57(1), 1–8 (2017)zbMATHGoogle Scholar
  9. 9.
    Yu, X.-T., Zhang, Z.-C., Xu, J.: Distributed wireless quantum communication networks with partially entangled pairs. Chin. Phys. B 23(1), 010303 (2014)ADSGoogle Scholar
  10. 10.
    Wang, K., Yu, X.-T., Lu, S.-L., Gong, Y.-X.: Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation. Phys. Rev. A 89(2), 022329 (2014)ADSGoogle Scholar
  11. 11.
    Zou, Z.-Z., Yu, X.-T., Gong, Y.-X., Zhang, Z.-C.: Multihop teleportation of two-qubit state via the composite GHZ-bell channel. Phys. Lett. A 381(2), 6 (2016)zbMATHGoogle Scholar
  12. 12.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394–4400 (1998)ADSMathSciNetGoogle Scholar
  13. 13.
    Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSGoogle Scholar
  14. 14.
    Li, Y.-H., Li, X.-H., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a Six-Qubit entangled state. Int. J. Theor. Phys. 53(11), 3780–3786 (2014)zbMATHGoogle Scholar
  16. 16.
    Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Bidirectional Controlled Quantum Teleportation in the Three-dimension System. Int. J. Theor. Phys. 57(7), 2233–2240 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Cai, R., Yu, X.-T., Zhang, Z.-C.: Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network. Int. J. Theor. Phys. 57(6), 1723–1732 (2018)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zha, X. W., Song, H. Y., Ma, G. L.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state. arXiv:1006.0052[quant-ph] (2010)
  19. 19.
    Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via Five-Qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)MathSciNetGoogle Scholar
  20. 20.
    Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-Qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)Google Scholar
  21. 21.
    Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93(6), 062305 (2016)ADSGoogle Scholar
  22. 22.
    Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., Cai, X.-D., Xu, P., Pan, G.-S., Jia, J.-J., Huang, Y.-M., Yin, H., Wang, J.-Y., Chen, Y.-A., Peng, C.-Z., Pan, J.-W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)ADSGoogle Scholar
  23. 23.
    Sun, Q.-C., Mao, Y.-L., Chen, S.-J., Zhang, W., Jiang, Y.-F., Zhang, Y.-B., Zhang, W.-J., Miki, S., Yamashita, T., Terai, H., Jiang, X., Chen, T.-Y., You, L.-X., Chen, X.-F., Wang, Z., Fan, J.-Y., Zhang, Q., Pan, J.-W.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10, 671 (2016)ADSGoogle Scholar
  24. 24.
    Meyers, R.E., Tunick, A.D., Deacon, K.S., Hemmer, P.R.: Survey of emerging information teleportation networks and protocols. URSI Radio Sci. Bullet. 2017(361), 34–54 (2017)Google Scholar
  25. 25.
    Sheng, Y.-B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025 (2017)Google Scholar
  26. 26.
    Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89(3), 035002 (2017)ADSMathSciNetGoogle Scholar
  27. 27.
    Hui, Z.: MAC Protocol Design For Multi-channel Wireless Local Area Network Based on MIS Model. Command Inf. Syst. Technol. 8(3), 68–71 (2017)Google Scholar
  28. 28.
    Gummalla, A.C.V., Limb, J.O.: Wireless medium access control protocols. IEEE Commun. Surv. Tutorials 3(2), 2–15 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  2. 2.The 28th Research Institute of CETCNanjingChina
  3. 3.State Key Lab. of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations