Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 103–113 | Cite as

Markovian and Non-Markovian Dynamics of Non-classical Correlations and Wigner Function for GHZ-Type Coherent States

  • Fatima-Zahra Siyouri
Article
  • 33 Downloads

Abstract

We process comparatively the time evolution of quantum discord, quantum entanglement and Wigner function for GHZ-type coherent states independently interacting with dephasing reservoirs and we address the influence of both Markovian and non-Markovian environments on their evolution. As a matter of fact, we show that in open multipartite systems negativity of Wigner function is sensitive not only to quantum entanglement but also to quantum discord. Indeed, we deem that the Wigner function can be used to capture and quantify general quantum correlations in open multipartite systems.

Keywords

Quantum entanglement Quantum discord Negativity of Wigner function Negativity of partial transpose Multipartite open system 

References

  1. 1.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Henderson, L., Vedral, V. J.: Phys. A Math. Gen. 34, 6899 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  5. 5.
    Schrödinger, E.: Naturwissenschaften 23, 807 (1935)ADSCrossRefGoogle Scholar
  6. 6.
    Sheng, Y. B., Zhou, L.: Sci. Bull. 62, 1025 (2017)CrossRefGoogle Scholar
  7. 7.
    Siyouri, F. Z.: Commun. Theor. Phys. 68, 729 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, W., Ding, D. S., Sheng, Y. B., et al.: Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Siyouri, F. Z., Ziane, M., El Baz, M., Hassouni, Y.: Int. J. Geom. Methods Mod. Phys. 15, 1850038 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  11. 11.
    Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.A., Garraway, B. M.: Phys. Rev. A 79, 042302 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    An, N.B., Kim, J., Kim, K.: Phys. Rev. A 82, 032316 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Pinto, J.P.G., Karpat, G., Fanchini, F.F.: Phys. Rev. A 88, 034304 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Siyouri, F., El Baz, M., Hassouni, Y.: Quantum Inf. Proc. 15(10), 4237–4252 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Kenfack, A., Zyczkowski, K.: J. Opt. B: Quantum Semiclass Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Banerji, A., Singh, R.P., Bandyopadhyay, A.: Opt. Commun. 330, 85 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Simon, R.: Phys. Rev. Lett. 84, 2726 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Siyouri, F. Z.: Commun. Theor. Phys. 68, 729 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Gerry, C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  20. 20.
    Wigner, E.P.: Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  21. 21.
    Zachos, K.C., Fairlie, B.D., Curtright, L.T.: Quantum Mechanics in Phase Space. World Scientific, Singapore (2005)Google Scholar
  22. 22.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  23. 23.
    Mari, A., Eisert, J.: Phys. Rev. Lett. 109, 230503 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Veitch, V., Wiebe, N., Ferrie, C., Emerson, J.: J. New Phys. 15, 013037 (2013)CrossRefGoogle Scholar
  25. 25.
    Daffer, S., Wodkiewicz, K., Cresser, J. D., McIver, J. K.: Phys. Rev. A 70, 010304 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Siyouri, F., Rfifi, S., El Baz, M., Hassouni, Y.: Commun. Theor. Phys. 65, 447 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Ali, M.: Phys. Lett. A 378, 2048 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Luo, S., Fu, S., Song, H.: Phys. Rev. A 86, 044101 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Breuer, H.-P., Laine, E.-M., Piilo, J.: Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Vidal, G., Werner, R. F.: Compatable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Sabin, C., García-Alcaine, G.: Eur. Phys. J. D 48(3), 435 (2008)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Cover, T.M., Thomas, J.A.: Wiley Series in Telecommunications. Wiley, New York (1991)Google Scholar
  33. 33.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  34. 34.
    Dodonov, V.V.J.: Opt. B Quantum Semiclass Opt. 4, R1–R33 (2002)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Phys. Rev. Lett. 74, 4083 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    Gorini, V., Frigerio, A., Verri, M., Kossakowski, A., Sudarshan, E. C. G.: Rep. Math. Phys. 13, 149 (1978)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Equipe Sciences de la matière et du Rayonnement, Département de Physique, Faculté des sciencesUniversité Mohammed V - AgdalRabatMorocco

Personalised recommendations