Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 83–91 | Cite as

Remote Preparation of Some Three Particle Entangled States Under Divided Information

  • Binayak S. Choudhury
  • Soumen Samanta
Article
  • 41 Downloads

Abstract

In this paper we design a protocol for the preparation of a class of three particle entangled states at a distant location in the situation where the information of the state is divided. This situation of shared information is important for security reason since entanglement is considered as a precious quantum resource. We use an eight particle entangled state in our protocol as the quantum resource. The scheme is supervised by a controller.

Keywords

Quantum entanglement Generalized three particle W-type state Eight-qubit cluster state Measurement Efficiency 

Notes

Acknowledgements

This work is supported by the University Grants Commission of India. The valuable suggestions of the referee are gratefully acknowledged.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)ADSzbMATHGoogle Scholar
  3. 3.
    Kim, Y.H., Kulik, S.P., Shis, Y.: Quantum teleportation of a polarization state with a complete Bell-state measurement. Phys. Rev. Lett. 86, 1370 (2001)ADSGoogle Scholar
  4. 4.
    Bao, S.S., Tomita, A.: Teleportation of an unknown state by W-state. Phys. Lett. A 296, 161–164 (2002)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)ADSzbMATHGoogle Scholar
  6. 6.
    Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)ADSGoogle Scholar
  7. 7.
    Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)MathSciNetGoogle Scholar
  9. 9.
    Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013).  https://doi.org/10.1007/s10773-013-1694-0 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)zbMATHGoogle Scholar
  11. 11.
    Yang, Y-Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016).  https://doi.org/10.1007/s10773-016-3044-5 zbMATHGoogle Scholar
  12. 12.
    Li, W., Zha, X.W., Qi, J-X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016).  https://doi.org/10.1007/s10773-016-3022-y MathSciNetzbMATHGoogle Scholar
  13. 13.
    Choudhury, B.S., Samanta, S: Asymmetric bidirectional 3 and 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017).  https://doi.org/10.1007/s10773-017-3495-3 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Choudhury, B.S., Samanta, S: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017).  https://doi.org/10.1007/s11128-017-1680-1 ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Tan, X., Yang, P., Song, T.: Teleportation of three-particle W state. Int. J. Theor. Phys. 57, 329–338 (2018).  https://doi.org/10.1007/s10773-017-3565-6 zbMATHGoogle Scholar
  16. 16.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSGoogle Scholar
  17. 17.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSGoogle Scholar
  18. 18.
    Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSGoogle Scholar
  19. 19.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSGoogle Scholar
  20. 20.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)ADSGoogle Scholar
  21. 21.
    Wang, D., Liu, Y-M, Zhang, Z-J: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)ADSGoogle Scholar
  22. 22.
    Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)zbMATHGoogle Scholar
  23. 23.
    Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011).  https://doi.org/10.1007/s10773-011-0774-2 zbMATHGoogle Scholar
  24. 24.
    Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755–1774 (2015).  https://doi.org/10.3390/e17041755 ADSGoogle Scholar
  25. 25.
    Wang, D., Hu, Y-D., Wang, Z-Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)ADSzbMATHGoogle Scholar
  26. 26.
    Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55(7), 3454–3466 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wang, D., Huang, A-J., Sun, W-Y., Shi, J-D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15(8), 3367–3381 (2016)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Zhang, D., Zha, X.W., Duan, Y-J., Yang, Y-Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169–2179 (2016).  https://doi.org/10.1007/s11128-016-1265-4 ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Sang, M-h., Nie, L.-P.: Controlled remote state preparation of an arbitrary two-qubit state via a six-qubit cluster state. Int. J. Theor. Phys. 56, 2345–2349 (2017).  https://doi.org/10.1007/s10773-017-3388-5 zbMATHGoogle Scholar
  30. 30.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)ADSGoogle Scholar
  31. 31.
    An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B-At. Mol. Opt. 42(12), 125501 (2009)ADSGoogle Scholar
  32. 32.
    Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853–5855 (2011)ADSGoogle Scholar
  33. 33.
    Yang, K-Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51, 1647–1654 (2012).  https://doi.org/10.1007/s10773-011-1041-2 zbMATHGoogle Scholar
  34. 34.
    Wang, D., Ye, L.: Probabilistic joint remote preparation of four-cubit cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)ADSzbMATHGoogle Scholar
  35. 35.
    Guan, X-W., Chen, X-B., Yang, Y-X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575–3586 (2012).  https://doi.org/10.1007/s10773-012-1244-1 MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Zhan, Y-B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997–1009 (2013).  https://doi.org/10.1007/s11128-012-0441-4 ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Peng, J-Y., Bai, M-Q., Mo, Z-W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015).  https://doi.org/10.1007/s11128-015-1122-x ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015).  https://doi.org/10.1007/s11128-014-0835-6 ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54 (2), 472–483 (2015)zbMATHGoogle Scholar
  42. 42.
    Ma, P.C., Chen, G-B., Li, X-W., Zhan, Y-B.: Deterministic joint remote preparation of asymmetric five-party three-qubit entangled states. Int. J. Theor. Phys. 56, 1233–1240 (2017).  https://doi.org/10.1007/s10773-016-3265-7 zbMATHGoogle Scholar
  43. 43.
    Fu, Y., Yin, H-L., Chen, T-Y., Chen, Z-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)ADSGoogle Scholar
  44. 44.
    Xu, G., Chen, X-B., Dou, Z., Yang, Y-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Ul Ain, N.: A novel approach for secure multi-party secret sharing scheme via quantum cryptography. In: Proceedings of 2017 International Conference on Communication, Computing and Digital Systems, C-CODE 7918912, pp. 112–116 (2017).  https://doi.org/10.1109/C-CODE.2017.7918912
  46. 46.
    Wang, S-S., Xu, G-B., Liang, X-Q., Wu, Y-L.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys.  https://doi.org/10.1007/s10773-018-3884-2 (2018)
  47. 47.
    Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations