International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 58–70 | Cite as

Nonclassical Properties of an Opto-Mechanical System Initially Prepared in N-Headed Cat State and Number State

  • Xinyun Liang
  • Qin GuoEmail author
  • Wen Yuan


Non-classical quantum states have been applied more and more deeply in quantum communication and quantum computation. By using the time evolution theory and the nonlinearlity of opto-mechanical system, new quantum states can be prepared in the opto-mechanical system which is composed of an N-headed cat state of photonic mode and a number state of mechanical mode. The distribution of the Wigner function (WF) of the mechanical mode exhibits the superposition of several WF wave packets of displaced number states. And it is interesting to find that the parameter N affects the wave-packet numbers of displaced number states in phase space for mechanical mode and the shape of the WF wave packets for photonic mode. The nonclassical properties are investigated through the WF and the negative part volume of WF. An interesting result is that the nonclassicality increases (decreases) with the parameter N for mechanical (photonic) mode. And for the initial state of larger value of parameter N, the increment of the nonclassicality for mechanical (or photonic) mode is increasing more with parameter k (or α). Furthermore the parameter N also affects the entanglement degree between the photonic mode and the mechanical mode.


Opto-mechanical system Nonclassical properties N-Headed Cat State (NHCS) Wigner function 



The project was supported by the National Natural Science Foundation of China (Nos. 11664018 and 11764020).


  1. 1.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Walter, S., Marquardt, F.: Classical dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Hill, J.T., Safavi-Naeini, A.H., Chan, J., Painter, O.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    O’Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., ClelandA, A.N.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Grudinin, I.S., Lee, H., Painter, O., Vahala, K.J.: Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Fonseca, P.Z.G., Aranas, E.B., Millen, J., Monteiro, T.S., Barker, P.F.: Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. Phys. Rev. Lett. 117, 173602 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Vitali, D., Mancini, S., Ribichini, L., Tombesi, P.: Mirror quiescence and high-sensitivity position measurements with feedback. Phys. Rev. A 65, 063803 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, K., Bariani, F., Dong, Y., Zhang, W., Meystre, P.: Proposal for an optomechanical microwave sensor at the subphoton level. Phys. Rev. Lett. 114, 113601 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Arvanitaki, A., Geraci, A.A.: Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Ma, Y.-Q., Danilishin, S.L., Zhao, C.-N., Miao, H.-X., Korth, W.Z., Chen, Y.-B., Ward, R.L., Blair, D.G.: Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Phys. Rev. Lett. 113, 151102 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Abbott, B.P.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Clerk, A.A., Marquardt, F., Harris, J.G.E.: Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Vivoli, V.C., Barnea, T., Galland, C., Sangouard, N.: Proposal for an optomechanical bell test. Phys. Rev. Lett. 116, 070405 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Kenan, Q., Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87, 063813 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Jiang, C., Jiang, L., Yu, H.-L., Cui, Y.-S., Li, X.-W., Chen, G.B.: Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 96, 053821 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Restrepo, J., Favero, I., Ciuti, C.: Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Phys. Rev. A 95, 023810 (2017)CrossRefGoogle Scholar
  21. 21.
    Cotufo, M., Fiore, A., Verhagen, E.: Coherent atom-phonon interaction through mode field coupling in hybrid optomechanical systems. Phys. Rev. Lett. 118, 133603 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 83, 063826 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Xu, X.-W., Wang, H., Zhang, J., Liu, Y.-X.: Engineering of nonclassical motional states in optomechanical systems. Phys. Rev. A 88, 063819 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Xu, X.-W., Zhao, Y.-J., Liu, Y.-X.: Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Phys. Rev. A 88, 022325 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Lei, F.-C., Gao, M., Du, C.-G., Jing, Q.-L., Long, G.-L.: Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. J. Opt. Soc. Am. B 32, 588 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Lee, S.Y., Lee, C.W., Nha, H., kaszlikowski, D.: Quantum phase estimation using a multi-headed cat state. J. Opt. Soc. Am. B 32, 1186 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Jiang, L.-Y., Guo, Q., Xu, X.-X., Cai, M., Yuan, W., Duan, Z.-L.: Dynamics and nonclassical properties of an opto-mechanical system prepared in four-headed cat state and number state. Opt. Commun. 369, 179 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Bose, S., Jacods, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon schröinger cat states. Science 342, 607 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, N.-R., Li, J.-F., Yu, Z.-B., Gong, L.-H., Farouk, A.: New quantum dialogue protocol based on continuous variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Liao, Q.-H., Ye, Y., Jin, P., Zhou, N.-R., Nie, W.-J.: Tripartite entanglement in an atom-cavity-optomechanical system. Int. J. Theor. Phys. 57, 1319 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  34. 34.
    Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quant. Semiclass. Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Sekatski, P., Aspelmeyer, M., Sangouard, N.: Macroscopic optomechanics from displaced single-photon entanglement. Phys. Rev. Lett. 112, 080502 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Center for Quantum Science and TechnologyJiangxi Normal UniversityNanchangChina
  3. 3.Key Laboratory of Optoelectronic and Telecommunication of JiangxiNanchangChina

Personalised recommendations