International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 40–57 | Cite as

Quantum Identity Authentication Scheme of Vehicular Ad-Hoc Networks

  • Zhiya Chen
  • Kunlin Zhou
  • Qin LiaoEmail author


With the development of the intelligent transportation system (ITS) and increasing application of vehicular ad-hoc networks (VANETs), the security of VANETs has become a crucial issue for VANETs and ITS. In this study, we propose a quantum VANETs protection scheme to address the security issue of vehicular identity authentication. It based on BB84 quantum key distribution protocol and quantum mechanics. Furthermore, the novel quantum scheme can defend most VANETs-aimed attacks. It also can be applied on connection of vehicle to everything (V2X), this is because reliability and security problem can be solved in proposed quantum scheme. By tactfully exploiting properties of quantum mechanics, our proposed scheme offers remarkable advantages which include remote identity authentication, identity revocation and irreversibility. The security analysis shows that our proposed scheme can further insure the security of VANETs identity authentication.


Quantum communication protocol BB84 quantum key distribution Intelligent transportation system Internet of vehicles Vehicular ad-hoc networks 



The work was supported by the Fundamental Research Funds for the Central Universities of Central South University (Project No:2018zzts025).


  1. 1.
    Raya, M., Hubaux, J.P.: Securing Vehicular Ad Hoc Networks[C]. In: International Conference on Pervasive Computing and Applications. IEEE, pp. 39–68 (2007)Google Scholar
  2. 2.
    Lin, X.D., Sun, X.T., Ho, P.H., Shen, X.M.: Gsis: a secure and privacy- preserving protocol for vehicular communications. IEEE Trans. Veh. Technol. 56(6), 3442–3456 (2007)Google Scholar
  3. 3.
    Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R.A.F., Loureiro, A.A.F.: Data communication in VANETs: protocols, applications and challenges. Ad Hoc Networks 44, 90–103 (2016)Google Scholar
  4. 4.
    Lehner, A., Graca, C.R., Strang, T.: A multi-broadcast communication system for high dynamic vehicular ad-hoc networks. IEEE ICUMT. 2(2), 286–302 (2014)Google Scholar
  5. 5.
    Jianhong, Z., Min, X., Liying, L.: On the security of a secure batch verification with group testing for VANET. Int. J. Netw. Secur. 16(5), 355–362 (2014)Google Scholar
  6. 6.
    Horng, S.J., Tzeng, S.F., Pan, Y., Fan, P., Wang, X., Li, T., Khan, K.M.: b-specs+: Batch verification for secure pseudonymous authentication in VAENT. IEEE TIFS. 8(11), 1860–1875 (2013)Google Scholar
  7. 7.
    Lee, C.C., Lai, Y.M.: Toward a secure batch verification with group testing for VAENT. Wirel. Netw. 19(6), 1441–1449 (2013)Google Scholar
  8. 8.
    Horng, S.J., Tzeng, S.F., Li, T., Wang, X., Huang, P.H., Khan, M.K.: Enhancing security and privacy for identity-based batch verification scheme in VAENT. IEEE Trans. Veh. Technol. 99, 1–1 (2015)Google Scholar
  9. 9.
    Chien, H.Y., Jan, J.K., Tseng, Y.M.: Forgery attacks on multisignature schemes for authenticating mobile code delegates. IEEE Trans. Veh. Technol. 51(6), 1669–1671 (2003)Google Scholar
  10. 10.
    Chang, C.C., Hwang, K.F.: Some forgery attacks on a remote user authentication scheme using smart cards. Inform. 14(3), 289–294 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wu, T.C., Hsu, C.L.: Cryptanalysis of digital multisignature schemes for authenticating delegates in mobile code systems. IEEE Trans. Veh. Technol. 52(2), 462–464 (2003)Google Scholar
  12. 12.
    Pironio, S., Acn, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New. J. Phys. 11(4), 1–2 (2009)Google Scholar
  13. 13.
    Harn, L., Hsin, W.J., Mehta, M.: Authenticated diffie-hellman key agreement protocol using a single cryptographic assumption. IEE P-Commun. 152(4), 404–410 (2005)Google Scholar
  14. 14.
    Lin, C.L., Wen, H.A., Hwang, T., Sun, H.M.: Provably secure three-party password-authenticated key exchange. Ieice. T. Fund. Electr. 87(11), 2990–3000 (2004)Google Scholar
  15. 15.
    Sun, H.M., Chen, B.C., Hwang, T.: Secure key agreement protocols for three-party against guessing attacks. J. Syst. Softw. 75(1), 63–68 (2005)Google Scholar
  16. 16.
    Wen, H.A., Lee, T.F., Hwang, T.: Provably secure three-party password-based authenticated key exchange protocol using weil pairing. IEE P-Commun. 152(2), 138–143 (2005)zbMATHGoogle Scholar
  17. 17.
    Chen, I.C., Hwang, T., Li, C.M.: Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol. Phys. Scripta. 78(3), 035005 (2008)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from Al- Gebraic PRFs. Springer, Berlin (2015)zbMATHGoogle Scholar
  19. 19.
    Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. R. Soc. Lond. A 26(4), 1–40 (1927)zbMATHGoogle Scholar
  20. 20.
    Dirac, P.A.M., Polkinghorne, J.C.: The principles of quantum mechanics. Clarendon Press, Oxford (1958)Google Scholar
  21. 21.
    Stewart, B.: An account of some experiments on radiant heat, involving an extension of prevost’s theory of exchanges. T. Roy. Soc. Edin-Earth. 22(1), 1–20 (2013)Google Scholar
  22. 22.
    Hottel, H.C., Cohen, E.S.: Radiant heat exchange in a gas enclosure: Allowance for nonuniformity of gas temperature. Aiche. J. 4(1), 3–14 (1958)Google Scholar
  23. 23.
    Bohr, N.: 3 c on the constitution of atoms and molecules. Philos. Mag. 26(151), 1–25 (1913)ADSzbMATHGoogle Scholar
  24. 24.
    Nielsen, M.A., Chuang, I.L., et al.: Quantum Computation and Quantum Information[J]. Math. Struct. Comput. Sci. 21(1), 1–59 (2002)MathSciNetGoogle Scholar
  25. 25.
    Mayers, D.: Unconditional security in quantum cryptography ACM (2001)Google Scholar
  26. 26.
    Bennett, C.H., Brassard, G.: Quantum Cryptgraphy: public key distribution and coin tossing. In: IEEE international conference on computers, systems, and signal processing, Bangalore, India (1984)Google Scholar
  27. 27.
    Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)ADSGoogle Scholar
  28. 28.
    Sano, Y., Matsumoto, R., Uyematsu, T.: Secure key rate of the bb84 protocol using finite sample bits. J. Phys. A: Math. Theor. 43(49), 495302 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cai, R., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New. J. Phys. 11(4), 045024 (2009)ADSGoogle Scholar
  30. 30.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature. 299(5886), 802–803 (1982)ADSzbMATHGoogle Scholar
  31. 31.
    Barnett, S.M., Pegg, D.T.: On the Hermitian optical phase operator. Opt. Acta. Int. J. Opt. 36(1), 7–19 (1989)Google Scholar
  32. 32.
    Ni, Z.X.: Nonlinear lie algebra and ladder operators for orbital angular momentum. J. Phys. A: Gen. Phys. 32(11), 2217 (1999)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Price, W.C., Chissick, S.S., Brody, T.A.: The uncertainty Principleand-Foundations of Quantum Mechanics. J. Wiley, New York (1977)Google Scholar
  34. 34.
    Dirac, P.A.M.: Quantised singularities in the electromagnetic field. P. Roy. Soc. A. Mat. 133(133), 60–72 (1931)ADSzbMATHGoogle Scholar
  35. 35.
    Einstein, A.: Physics and reality. J. Franklin. I. 221(3), 349382 (1936)Google Scholar
  36. 36.
    Agassi, J., Faraday, M.: Faraday as a natural philosopher [1971]. Brit. Med. J. 2(4882), 287 (1971)Google Scholar
  37. 37.
    Kauffman, L.H., Lomonaco, S.J.: Comparing quantum entanglement and topological entanglement. New. J. Phys. 4(1), 73 (2002)ADSGoogle Scholar
  38. 38.
    Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)ADSGoogle Scholar
  39. 39.
    Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack. Phys. Rev. A. 87(6), 19932001 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Traffic and Transportation EngineeringCentral South UniversityChangshaChina
  2. 2.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations