Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 31–39 | Cite as

Quantum Multi-proxy Blind Signature Scheme Based on Four-Qubit Cluster States

  • Xiang-Qian Liang
  • Yu-Liang Wu
  • Yong-Hua Zhang
  • Sha-Sha Wang
  • Guang-Bao XuEmail author
Article
  • 41 Downloads

Abstract

An arbitrated quantum multi-proxy blind signature scheme, which is based on four-qubit cluster states, is proposed in this paper. This scheme satisfies all the characteristics of a multi-proxy blind signature scheme. To guarantee the security of this scheme, some quantum technologies such as quantum key distribution (QKD) protocol, eavesdropping check, quantum one-time pad and quantum secure direct communication (QSDC) protocol are used. Analysis results show that our scheme is secure.

Keywords

Four-qubit cluster state Arbitrated quantum signature Quantum proxy signature 

References

  1. 1.
    Ekert, A.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–664 (1991)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Lin, S., Wang, H., Guo, G.D., Ye, G.H.: Authenticated multi-user quantum key distribution with single particles. Int. J. Quantum Inform. 14, 1650002 (2016)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Hang, P., Zhu, J., He, G.Q., et al.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51, 2514–2523 (2012)Google Scholar
  5. 5.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)ADSGoogle Scholar
  7. 7.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSGoogle Scholar
  8. 8.
    Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307 (2004)ADSGoogle Scholar
  9. 9.
    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Three-party quantum secret sharing of secure direct communication based on chi-type entangled states. Chin. Phys. B 19(5), 050306 (2010)ADSGoogle Scholar
  10. 10.
    Yang, Y.G., Wang, Y., Teng, Y.W., Wen, Q.Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)ADSzbMATHGoogle Scholar
  11. 11.
    Zhang, Z.J., Yang, J., Man, Z.X., et al.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33, 133–136 (2005)ADSGoogle Scholar
  12. 12.
    Yan, F.L., Gao, T., Li, Y.C.: Quantum secret sharing between multiparty and multiparty with four states. Sci. China Ser. G-Phys. Mech. Astron. 50(5), 572–580 (2007)ADSzbMATHGoogle Scholar
  13. 13.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with single photons. Chin. Phys. B 18, 3189–3192 (2009)ADSGoogle Scholar
  14. 14.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282, 3382–3385 (2009)ADSGoogle Scholar
  15. 15.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14(1), 1650007 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSGoogle Scholar
  19. 19.
    Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China-Phys. Mech. Astron. 54(3), 496–501 (2011)ADSGoogle Scholar
  20. 20.
    Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China-Phys. Mech. Astron. 53(7), 1271–1275 (2010)ADSGoogle Scholar
  21. 21.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSGoogle Scholar
  22. 22.
    Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China-Phys. Mech. Astron. 54(5), 942–947 (2011)ADSGoogle Scholar
  23. 23.
    Long, G.L., Wang, C., Li, Y.S.: Quantum secure direct communication (in Chinese). Sci. Sin-Phys. Mech. Astron. 41, 332–342 (2011)Google Scholar
  24. 24.
    Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Ye, T.Y., Jiang, L.Z.: False alarm probability of eavesdropping checks for controllable quantum secret sharing. Acta Photon. Sin. 41(9), 1113–1117 (2012)Google Scholar
  26. 26.
    Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Lett. A 85(4), 042302 (2012)Google Scholar
  27. 27.
    Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum identification scheme of cross-center based on W-state. Acta Photon. Sin. 39(9), 1616–1620 (2010)Google Scholar
  28. 28.
    Zhou, X.Q., Wu, Y.W.: Token-bus network fidelity of quantum teleportation by three-photon entangled W state. Acta Photon. Sin. 39(11), 2093–2096 (2010)Google Scholar
  29. 29.
    Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)ADSGoogle Scholar
  30. 30.
    Gottesman, D., Chuang, I.L.: Quantum digital signature. arXiv:quant-ph/0105032v2 (2001)
  31. 31.
    Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z. Naturforsch. A 62(3–4), 147–151 (2007)ADSzbMATHGoogle Scholar
  32. 32.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSGoogle Scholar
  33. 33.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57, New Delhi (1966)Google Scholar
  34. 34.
    Cao, H.J., Huang, J., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53, 3095–3100 (2014)zbMATHGoogle Scholar
  35. 35.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56, 1762–1770 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Boykin, P., Roy Chowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)ADSGoogle Scholar
  38. 38.
    Vernam, G.: Cipher printing telegraph systems for secret wire and radio telegraphic communication. Trans. A. I. E. E. XLV 295–301 (1926)Google Scholar
  39. 39.
    Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: In Herbert bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcat. Chaos 26, 11 (2016)zbMATHGoogle Scholar
  42. 42.
    Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)MathSciNetGoogle Scholar
  43. 43.
    Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
  44. 44.
    Meng, X.Z., Zhao, S.N., Zhang, W.Y.: Adaptive dynamics analysis of a predator-prey model with selective disturbance. Appl. Math. Comput. 266, 946–958 (2015)MathSciNetGoogle Scholar
  45. 45.
    Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)MathSciNetGoogle Scholar
  46. 46.
    Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Jiang, T.S., Jiang, Z.W., Ling, S.T.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiang-Qian Liang
    • 1
  • Yu-Liang Wu
    • 1
  • Yong-Hua Zhang
    • 2
  • Sha-Sha Wang
    • 1
  • Guang-Bao Xu
    • 1
    Email author
  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina
  2. 2.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations