Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 22–30 | Cite as

The Dynamical Casimir Effect in Squeezed Vacuum State

  • Shu Mei Pan
  • Bahetiguli Asilibieke
  • Li Zheng
  • Tian TianEmail author
  • Xue Zhang
  • Tai Yu ZhengEmail author
Article
  • 52 Downloads

Abstract

The dynamical Casimir effect (DCE) tells that the photons can be generated in the vacuum cavity. We here show how the squeezing of the cavity mode and the coupling between the atoms and cavity influence the DCE. We show that the atoms can be served as probe to detect the DCE. Our results show that the photon number increases with the increasing of the photonic squeezing but decreases with the atom-cavity coupling. The excitation number of the atom increases with both of the increasing of the squeezing and the atom-cavity coupling strength.

Keywords

Dynamical Casimir effect Collective excitation effect Squeezing effect 

Notes

Acknowledgments

This work is supported by the NSFC (under Grant No. 11175044), Educational Commission of Jilin Province of China (Grant No. 2017LY508L23), Jilin Province Science and Technology Development Plan (Grant No. 20180520175JH) the project of cultivating young teachers in Changchun University(Grant No. 2018JBC08L14).

References

  1. 1.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Nederl. Akad. Wet. B 51, 793 (1948)zbMATHGoogle Scholar
  2. 2.
    Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 mu m range. Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Lamoreaux, S.K.: Quantum physics quantum force turns repulsive. Nature 457, 156 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Moore, G.T.: Quantum Theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    Fulling, S.A., Davies, P.C.W: Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proc. R. Soc. A 348, 393 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Dodonov, V.V.: Current status of the dynamical Casimir effect. Phys. Scr. 82, 038105 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Plunien, G., Schutzhold, R., Soff, G.: Dynamical Casimir effect at finite temperature. Phys. Rev. Lett. 84, 1882 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in superconducting microwave circuits. Phys. Rev. A 82, 052509 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Lahteenmaki, P., Paraoanu, G.S., Hassel, J., Hakonen, P.J.: Dynamical Casimir effect in a Josephson metamaterial. PNAS 110, 4234 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Jaskula, J.-C., Partridge, G.B., Bonneau, M., Lopes, R., Ruaudel, J., Boiron, D., Westbrook, C.I.: Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate. Phys. Rev. Lett. 109, 220401 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E.: Dynamical Casimir effect entangles artificial atoms. Phys. Rev. Lett. 113, 093602 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Ji, J.-Y., Jung, H.-H., Park, J.-W., Soh, K.-S.: Production of photons by the parametric resonance in the dynamical Casimir effect. Phys. Rev. A 56, 4440 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    Milton, K.A., Ng, Y.J.: Observability of the bulk Casimir effect: Can the dynamical Casimir effect be relevant to sonoluminescence? Phys. Rev. E 57, 5504 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Haro, J., Elizalde, E.: Hamiltonian approach to the dynamical Casimir effect. Phys. Rev. Lett. 97, 130401 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Fujii, T., Matsuo, S., Hatakenaka, N., Kurihara, S., Zeilinger, A.: Quantum circuit analog of the dynamical Casimir effect. Phys. Rev. B 84, 174521 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Koghee, S., Wouters, M.: Dynamical Casimir emission from polariton condensates. Phys. Rev. Lett. 112, 036406 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Rizzuto, L., Passante, R., Persico, F.: Dynamical Casimir-Polder energy between an excited- and a ground-state atom. Phys. Rev. A 70, 012107 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Mahajana, S., Aggarwal, N., Bhattacherjee, A.B.: ManMohana: dynamical Casimir effect in superradiant light scattering by Bose Einstein condensate in an optomechanical cavity. Chin. Phys. B 23, 020315 (2014)CrossRefGoogle Scholar
  21. 21.
    Dodonov, A.V.: Continuous intracavity monitoring of the dynamical Casimir effect. Phys. Scr. 87, 038103 (2013)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    De Castro, A.S.M., Dodonov, A.V.: Continuous monitoring of the dynamical Casimir effect with a damped detector. Phys. Rev. A 89, 063816 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Zhang, X., Zheng, T.-Y., Tian, T., Pan, S.-M.: The dynamical Casimir effect versus collective excitations in atom ensemble. Chin. Phys. Lett. 28, 064242 (2011)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PhysicsNortheast Normal UniversityChangchunChina
  2. 2.College of Electronic and Information EngineeringYili Normal UniversityYiliChina
  3. 3.Information Science and Engineering CollegeDalian Polytechnic UniversityDalianChina
  4. 4.School of ScienceChangchun UniversityChangchunChina
  5. 5.Jilin Engineering Laboratory for Quantum Information TechnologyChangchunChina
  6. 6.Key Laboratory of Materials Design and Quantum SimulationChangchun UniversityChangchunChina

Personalised recommendations