Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 10–21 | Cite as

Quantum Security Computation on Shared Secrets

  • Hai-Yan Bai
  • Zhi-Hui LiEmail author
  • Na Hao
Article

Abstract

Ouyang et al. proposed an (n, n) threshold quantum secret sharing scheme, where the number of participants was limited to n = 4k + 1, kZ+, and the security evaluation of the scheme was carried out accordingly. In this paper, we introduce an (n, n) threshold quantum secret sharing scheme for the number of participants n in any case (nZ+ ). The scheme is based on a quantum circuit, which consists of Clifford group gates and Toffoli gates. We study the properties of the quantum circuit in this paper and use the quantum circuit to analyze the security of the scheme for dishonest participant attack.

Keywords

Secret sharing scheme Quantum circuit Quantum computation Unitary matrix 

References

  1. 1.
    Bennett, C.H., Brassard, G.: Systems and Signal Processing, vol. 175. IEEE Press, New York (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum Cryptography Based on bells Theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Crpeau, C., Gottesman, D., Smith, A.: Secure Multi-party Quantum Computing, The Thiry-Fourth ACM Symposium. ACM, pp. 643–652 (2002)Google Scholar
  4. 4.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal Blind Quantum Computation, Foundations of Computer Science, pp. 517–526 (2009)Google Scholar
  5. 5.
    Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Experimental demonstration of blind quantum computing. Science 335, 303 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. Found. Comput. Sci. 19, 517–526 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science, pp. 453–469 (2017)Google Scholar
  9. 9.
    Reichardt, B., Unger, F., Vazirani, U.: Classical command of quantum systems. Nat. (Lond.) 496(7446), 456–460 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 012303 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Morimae, T.: Verification for measurement-only blind quantum computing. Phys. Rev. A 89, 060302 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Hayashi, M., Morimae, T.: Verifiable Measurement-Only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 115, 220502 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Zhou, Z.W., Tu, T., Gong, M., et al.: Progress and Prospect of quantum computing. Prog. Phys. 29, 127–165 (2009)Google Scholar
  14. 14.
    Ouyang, Y., Tan, S.H., Zhao, L., et al.: Computing on quantum shared secrets. Phys. Rev. A 96, 052333 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bai, C.M., Li, Z. H., Xu, T.T., et al.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55, 4972–4986 (2016)CrossRefzbMATHGoogle Scholar
  17. 17.
    Deng, F.G., Gui, L.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein−Podolsky−Rosen pairs. Phys. Lett. A 340, 43–50 (2006)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Bai, C.M., Li, Z.H., Liu, C.J., et al.: Quantum secret sharing using orthogonal multi-qudit entangled states. Quantum Inf. Process. 16, 304 (2017)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Physics 69, 521–524 (2004)Google Scholar
  20. 20.
    Xu, T.T., Li, Z.H., Bai, C.M., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tittel, W, Zbinden, H, Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 42301 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf Process 16, 59 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 192–193 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Deutsch, D., Barenco, A., Ekert, A.: Universality in quantum computation. Proc. Math. Phys. Sci. 449(1937), 669–677 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate constructions. Phys. Rev. A 62, 052316 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations