International Journal of Theoretical Physics

, Volume 57, Issue 12, pp 3874–3881 | Cite as

Quantum Private Comparison Protocol with Five-Particle Cluster States

  • Xin-Wei Zha
  • Xiao-Yuan Yu
  • Yong Cao
  • Shu-Kai WangEmail author


In this paper, a quantum private comparison (QPC) protocol based on five-particle cluster state is proposed. In our protocol, two parties can compare the equality of their secrets with the help of a semi-honest third party (TP), who is allowed to misbehave on his own but will not conspire with either of the two parties. Our protocol utilizes the single-particle measurement and Bell measurement. It is easy to implement for current technologies. The security of our protocol with respect to both outsider attack and participant attack is also discussed. Any information about the private information, and the comparison result will not be leaked out, even the third party cannot know these information.


Quantum private comparison (QPC) Five-qubit cluster states Semi-honest third party (TP) 



This work was supported by the foundation of Shannxi provincial Educational Department under Contract No. 15JK1668 and the Natural Science Foundation of Shannxi provincial of China Grant No. 2015JM6263 and No. 2013JM1009.


  1. 1.
    Bennet, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems and signal Processing, pp 175–179. IEEE, Bangalore (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell theorem. Phys. Rev. Lett. 68, 557–559 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A 39, 14089–14099 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, C.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Li, X.H.: Quantum secure direct communication with quantumencryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, Z.J., Man, Z.X.: Secure direct bidirectional communication protocol using the Einstein- Podolsky-Rosen pair block. arXiv:0403215 pdf (2004)
  19. 19.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Zheng, C., Long, G.F.: Quantum securedirect dialogue using Einstein-Podolsky-Rosen pairs. Sci. China-Phys. Mech. Astron. 57(7), 1238–1243 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, Z.J., Zhong, X.M.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341, 55–59 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A: Math. Theor. 40, 13121 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. EPL 84, 50001 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: Centrally controlled quantum teleportation. Opt. Commun. 283, 4802–4809 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, D., Zha, X.W., Zha, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Proc. 14, 3835 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Beaver, D.: Secure multi-party protocols and zero-knowledge proof systems tolerating a faulty minority. J. Cryptol. 4(2), 75–122 (1991)CrossRefGoogle Scholar
  32. 32.
    Beerliová-Trubíniová, Z., Hirt, M.: Efficient Multi-Party Computation with Dispute Control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp 305–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22 (5), 1049–1052 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Li, C.Y., Li, X.H., Deng, F.G.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2897–2899 (2006)ADSMathSciNetGoogle Scholar
  35. 35.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51, 69–77 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with w states. Int. J. Theor. Phys. 53, 1723–1729 (2014)CrossRefGoogle Scholar
  43. 43.
    Sun, Z., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Yang, Y.G., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled Six-Qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ye, T. Y., Ji, Z.X.: Two-Party Quantum Private Comparison with Five-Qubit Entangled States. Int. J. Theor. Phys. 56, 1517–1529 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Sheng, Y.B., Deng, F.G.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations