Advertisement

Shannon Logic Based Novel QCA Full Adder Design with Energy Dissipation Analysis

  • Nehru Kandasamy
  • Firdous Ahmad
  • Nagarjuna Telagam
Article
  • 10 Downloads

Abstract

Quantum-dot Cellular Automata (QCA) is an emerging nanotechnology to replace VLSI-CMOS digital circuits. Due to its attractive features such as low power consumption, ultra-high speed switching, high device density, several digital arithmetic circuits have been proposed. Adder circuit is the most prominent component used for arithmetic operations. All other arithmetic operation can be successively performed using adder circuits. This paper presents Shannon logic based QCA efficient full adder circuit for arithmetic operations. Shannon logic expression with control variables helps the designer to reduce hardware cost; using with minimum foot prints of the chip size. The mathematical models of the proposed adder are verified with the theoretical values. In addition, the energy dissipation losses of the proposed adder are carried out. The energy dissipation calculation is evaluated under the three separate tunneling energy levels, at temperature T = 2K.The proposed adder dissipates less power. QCAPro tool is used for estimating the energy dissipation. In this paper we proposed novel Shannon based adder for arithmetic calculations. This adder has been verified in different aspects like using Boolean algebra besides it power analysis has been calculated. In addition 1-bit full adder has been enhanced to propose 2-bit and 4-bit adder circuits.

Keywords

QCA XOR Adder Multiplexer Shannon logic Energy dissipation QCAPro Tool 

References

  1. 1.
    Allan, A., Edenfeld, D., Joyner, W.H., Kahng, A.B., Rodgers, M., Zorian, Y.: 2001 technology roadmap for semiconductors. Computer 35(1), 42–53 (2002)CrossRefGoogle Scholar
  2. 2.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    Hashemi, S., Navi, K.: A novel robust QCA full-adder. Prog. Mater. Sci. 11, 376–380 (2015)Google Scholar
  5. 5.
    Niemier, M.T., Kogge, P.M.: Problems in designing with QCAs: Layout = timing. Int. J. Circuit Theory Appl. 29(1), 49–62 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhang, R., Walus, K., Wang, W., Jullien, G.A.: Performance comparison of quantum-dot cellular automata adders. In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on (pp. 2522-2526). IEEE (2005)Google Scholar
  7. 7.
    Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. arXiv:1204.2048 (2012)
  8. 8.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Cho, H., Swartzlander, E.E., Jr.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(2), 721–727 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nehru, K., Shanmugam, A., Deepa, S., Priyadarshini, R.: A shannon based low power adder cell for neural network training. Int. J. Eng. Technol. 2(3), 258 (2010)CrossRefGoogle Scholar
  12. 12.
    Das, J.C., De, D.: Shannon’s expansion theorem-based multiplexer synthesis using QCA. Nanomater. Energy 5(1), 53–60 (2016)CrossRefGoogle Scholar
  13. 13.
    Perri, S., Corsonello, P., Cocorullo, G.: Area-delay efficient binary adders in QCA. IEEE Transactions on very large scale integration (vlsi) systems 22(1), 1174–1179 (2014)CrossRefGoogle Scholar
  14. 14.
    De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)CrossRefGoogle Scholar
  15. 15.
    Dysart, T.J., Kogge, P.M.: Probabilistic analysis of a molecular quantum-dot cellular automata adder. In: Defect and fault-tolerance in vlsi systems, 2007. DFT’07. 22nd IEEE International Symposium on (pp. 478-486). IEEE (2007)Google Scholar
  16. 16.
    Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39(2), 426–433 (2015)CrossRefGoogle Scholar
  17. 17.
    Lombardi, F., Huang, J., Ma, X., Momenzadeh, M., Ottavi, M., Schiano, L., Vankamamidi, V.: Design and test of digital circuits by quantum-dot cellular automata. In: Lombardi, F., Huang, J. (eds.) . UK, Norwood (2008)Google Scholar
  18. 18.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(2), 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault- tolerant QCA full adder. Microelectron. J. 46, 531–542 (2015)CrossRefGoogle Scholar
  20. 20.
    Ambika, G., Shanthala, G.M., Sharan, P., Talabattula, S.: An optimized design of complex multiply-accumulate (MAC) unit in quantum dot cellular automata (QCA). In: Silicon photonics & high performance computing, pp 95–102. Springer, Singapore (2018)Google Scholar
  21. 21.
    Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders. In: Nanotechnology, 2003. IEEE-NANO 2003. 2003 3rd IEEE Conference on (vol. 1, pp. 461–464). IEEE (2003)Google Scholar
  22. 22.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Vetteth, A., Walus, K., Jullien, G.A., Dimitrov, V.: Quantum dot cellular automata carry-look-ahead adder and barrel shifter, Proceed. IEEE Emerging Telecommun. Technol. Dalla TX.2-I-4 (2002)Google Scholar
  24. 24.
    Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro - An error-power estimation tool for QCA circuit design, IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377–2380 (2011)Google Scholar
  25. 25.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nehru Kandasamy
    • 1
  • Firdous Ahmad
    • 2
  • Nagarjuna Telagam
    • 3
  1. 1.Department of ECEInstitute of Aeronautical EngineeringHyderabadIndia
  2. 2.Department of ElectronicsCluster UniversityJammuIndia
  3. 3.Department of ECEGITAM UniversityBangaloreIndia

Personalised recommendations