Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 11, pp 3463–3472 | Cite as

Mutually Unbiased Property of Maximally Entangled Bases and Product Bases in \(\mathbb {C}^{d}\otimes \mathbb {C}^{d}\)

  • Ling-Shan Xu
  • Gui-Jun Zhang
  • Yi-Yang Song
  • Yuan-Hong Tao
Article

Abstract

We investigate mutually unbiased property between maximally entangled bases and product bases in bipartite systems \(\mathbb {C}^{d} \otimes \mathbb {C}^{d}\). We first visualize the description of \(p_{1}^{a_{1}}-1\)-member mutually unbiased maximally entangled bases(MUMEBs) in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d}\ \), while \(d=p_{1}^{a_{1}}p_{2}^{a_{2}}...p_{s}^{a_{s}}\), \(3\leq p_{1}^{a_{1}}\leq p_{2}^{a_{2}}\leq ...\leq p_{s}^{a_{s}}\), \(p_{1}^{a_{1}},...,p_{s}^{a_{s}}\) are distinct primes, which was proposed by Liu et al. (Quantum Inf. Process. 16(6), 159, 2017). We then establish two more mutually unbiased product bases which are also mutually unbiased to the above \(p_{1}^{a_{1}}-1\) MUMEBs, thus we present \(p_{1}^{a_{1}}+ 1\) mutually unbiased bases(MUBs) in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d}\ \). We also show the concrete construction of those MUBs in bipartite systems \(\mathbb {C}^{3} \otimes \mathbb {C}^{3}\ \), \(\mathbb {C}^{4} \otimes \mathbb {C}^{4}\ \), \(\mathbb {C}^{5} \otimes \mathbb {C}^{5}\ \) and \(\mathbb {C}^{12} \otimes \mathbb {C}^{12}\).

Keywords

Mutually unbiased bases Maximally entangled state Product state Product basis 

References

  1. 1.
    Durt, T., Englert, B. -G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quant. Inform. 8, 535–640 (2010)CrossRefGoogle Scholar
  2. 2.
    Ivanovi, I.D.: Geometrical descripition of quantal state determination. J. Phys. A. 14, 3241–3245 (1981)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiase measurements. Ann. Phys. (NY) 191, 363–381 (1989)CrossRefADSGoogle Scholar
  4. 4.
    Englert, B. -G., Kaszlikowski, D., Kwek, L.C., Chee, W.H: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quant. Inform. 6, 129–157 (2008)CrossRefGoogle Scholar
  5. 5.
    McNulty, D., Weigert, S.: The limited role of mutually unbiased and product bases in dimension 6. J. Phys. A: Math. Theor. 45, 102001 (2012)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Bravyi, S., Smolin, J.A.: Unextendible maximally entangled bases. Phys. Rev. A. 84, 042306 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A. 88, 034301 (2013)CrossRefADSGoogle Scholar
  9. 9.
    Nan, H., Tao, Y.H., Li, L.S., Zhang, J.: Unextendible maximally entangled bases and mutually unbiased bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{\prime }}\). Int. J. Theor. Phys. 54, 927–932 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, M.S., Wang, Y.L., Fei, S.M., Zheng, Z.J.: Unextendible maximally entangled bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{\prime }}\). Phys. Rev. A. 89, 062313 (2014)CrossRefADSGoogle Scholar
  11. 11.
    Wang, Y.L., Li, M.S., Fei, SM: Unextendible maximally entangled bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{\prime }}\). Phys. Rev. A. 90, 034301 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Tao, Y.H., Nan, H., Zhang, J., Fei, S.M.: Mutually unbiased maximally entangled bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{kd}\). Quant. Inform. Process. 14, 2635–2644 (2015)CrossRefADSGoogle Scholar
  13. 13.
    Zhang, J., Tao, Y.H., Nan, H., Fei, S.M.: Construction of mutually unbiased bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{2^{l}d^{\prime }}\). Quant. Inform. Process. 14, 2291–2300 (2015)CrossRefADSGoogle Scholar
  14. 14.
    Nan, H., Tao, Y.H., Wang, T.J., Zhang, J., Fei, S.M.: Mutually unbiased maximally entangled bases for the bipartite system in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{k}}\). Int. J. Theor. Phys. 55, 4324–4330 (2015)CrossRefGoogle Scholar
  15. 15.
    Luo, L.Z., Li, X.Y., Tao, Y.H.: Two types of maximally entangled bases and their mutually unbiased property in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{\prime }}\). Int. J. Theor. Phys. 55, 5069–5076 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, Y., Li, L.X., Du, S.P., Wu, S.J.: Entangled bases with fixed Schmidt number. J. Phys. A: Math. Theor. 48, 245301 (2015)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Liu, J.Y., Yang, M.H., Feng, K.Q.: Mutually unbiased maximally entangled bases in \(\mathbb {C}^{d} \otimes \mathbb {C}^{d}\). Quant. Inf. Process. 16(6), 159 (2017)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Han, Y.F., Zhang, G.J., Yong, X.L., Xu, L.S., Tao, Y.H.: Mutually unbiased special entangled bases with Schmidt number 2 in \(\mathbb {C}^{3} \otimes \mathbb {C}^{4k}\). Quant. Inf. Process. 17(3), 159 (2018)CrossRefADSGoogle Scholar
  19. 19.
    Li, Z.G., Zhao, M.J., Fei, S.M., Fan, H., Liu, W.M.: Mixed maximally entangled states. Quant. Inf. Comput. 12, 63 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ling-Shan Xu
    • 1
  • Gui-Jun Zhang
    • 1
  • Yi-Yang Song
    • 1
  • Yuan-Hong Tao
    • 1
  1. 1.Department of Mathematics, College of SciencesYanbian UniversityYanjiChina

Personalised recommendations