Advertisement

Effects of Temperature on the Ground State Energy of the Strong Coupling Polaron in a RbCl Asymmetrical Semi-Exponential Quantum Well

  • Xiu-Qing Wang
  • Jing-Lin Xiao
Article
  • 8 Downloads

Abstract

In this article, temperature effects on strong coupling polaron in a RbCl asymmetrical semi-exponential quantum well (ASEQW) are studied by applying the quantum statistical theory (QST). Based on the well-known LLP unitary transformation and linear combination operation (LCO) methods, we have derived the ground state energy and the mean phonon number of strong coupling polaron in the ASEQW. According to the obtained results, ground state energy decreases with increasing temperature, whereas mean phonon number increases by increasing temperature. The ground state energy and mean phonon number are decaying functions with raising parameter \(\sigma \), whereas they are enhancing ones with lifting parameter \(U_{0}\).

Keywords

Ground state energy Temperature Strong-coupling polaron Asymmetrical semi-exponential quantum well (ASEQW) 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11464033, 11464034) and National Natural Science Foundation of Inner Mongolia (Grant No.2018LH01001).

References

  1. 1.
    Anapolitanos, I., Landon, B.: Lett. Math. Phys. 103, 1347 (2013)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Griesemer, M., Wellig, D.: J. Phys. A Math. Theor. 46, 425202 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Frank, R.L., Geisinger, L.: Commun. Math. Phys. 338, 1 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Carley, H.: J. Math. Phys. 48(01), 2101 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Wellig, D.: Rev. Math. Phys. 27, 1550005 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mou, S., Guo, K.X., Xiao, B.: Superlatt. Microstruct. 65, 309 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Guo, K.X., Xiao, B., Zhou, Y.C., Zhang, Z.M.: J. Opt 17, 03550 (2015)Google Scholar
  8. 8.
    Chen, Y.J., Xiao, J.L.: Acta. Phys. Sin 57, 6758 (2008)Google Scholar
  9. 9.
    Chen, Y.J., Xiao, J.L.: Commun. Theor. Phys 52, 601 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Sarengaowa, Xiao, J.L., Zhao, C.L.: Chinese J. Phys. 55, 1883 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lee, T.D., Low, F.E., Pines, D.: Phys. Rev. 90(2), 297 (1953)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Huybrechts, W.J.: J. Phys. C. Solid State Phys. 10, 3761 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    Devreese, J.T.: Polarons in ionic crystals and polar semiconductors. North-Holland Publ. Co., Amsterdam (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Condensed Matter PhysicsInner Mongolia University for NationalitiesTongliaoChina

Personalised recommendations