Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2892–2903 | Cite as

Quantum-Catalyzed Squeezed Vacuum State with Single-Photon Measurement and its Nonclassicality

  • Heng-Mei Li
  • Xue-Xiang Xu
  • Zhen Wang
  • Zhi-Long Wan
  • Xu-Ye Jun
Article

Abstract

We propose a theoretical scheme to generate a new kind of non-Gaussian state, called single-photon quantum-catalyzed squeezed vacuum state (SPQCSVS), by using a squeezed vacuum state as the input state of quantum-optical catalysis with single-photon detection. After successful detection, SPQCSVS is a superposition of squeezed vacuum state (SVS) and two-photon excited SVS. The success probability of the detection also was derived and then the nonclassical properties of SPQCSVS were analytically studied in terms of photon number distribution, Mandel’s parameter, second-order correlation function, quadrature squeezing, and the negativity of Wigner function(WF). It is found that the SPQCSVS is highly nonclassical and its nonclassicality depends on the input squeezing parameter λ and the transmissivity T of beam splitter (BS). In particular, the negative volume of WF for SPQCSVS can be largened by increasing the input squeezing parameter λ or decreasing the transmissivity T of BS. Therefore, by modulating these parameters to improve and enhance the nonclassicality of SPQCSVS, it is possible to enhance the performance applying in the fields of quantum information and quantum computation.

Keywords

Quantum catalysis Squeezed vacuum state Beam splitter Conditional measurement 

Notes

Acknowledgments

Supported by the National Natural Science Foundation of China (Nos.11665013 and 11704051) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.16KJB140001).

References

  1. 1.
    Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, New York (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Alexanian, M.: Nonclassicality criteria: quasiprobability distributions and correlation functions. Phys. Rev. A 94, 043837 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71, 1816 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Vidiella-Barranco, A., Roversi, J.A.: Quantum state engineering via unitary transformations. Phys. Rev. A 58, 3349 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Kim, M.S.: Recent developments in photon-level operations on travelling light fields. J. Phys. B: At. Mol. Opt. Phys. 41, 133001 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Lee, S.Y., Park, J., Ji, S.W., Raymond Ooi, C.H., Lee, H.W.: Nonclassicality generated by photon annihilation-then-creation and creation-then-annihilation operations. J. Opt. Soc. Am. B 26, 1532 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, L.Y., Xu, X.X., Wang, Z.S., Xu, X.F.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82, 043842 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Li, H.M., Yuan, H.C., Fan, H.Y.: Single-mode excited GHZ-type entangled coherent state. Int. J. Theor. Phys. 48, 2849 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lee, S.Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, Z., Li, H.M., Yuan, H.C., Wan, Z.L., Meng, X.G.: Statistical properties of photon-added two-mode squeezed coherent states. Int. J. Theor. Phys. 56, 729 (2017)CrossRefMATHGoogle Scholar
  13. 13.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    Zavatta, A., Parigi, V., Bellini, M.: Experimental nonclassicality of single-photon-added thermal light states. Phys. Rev. A 75, 052106 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, S., Hou, L.L., Chen, X.F., Xu, X.F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Bartley, T.J., Crowley, P.J.D., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87, 022313 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 012317 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, ZF, Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Nha, H., Carmichael, H.J.: Proposed test of quantum nonlocality for continuous variables. Phys. Rev. Lett. 93, 020401 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Harel, G., Kurizki, G., McIver, J.K., Coutsias, E.: Optimized preparation of quantum states by conditional measurements. Phys. Rev. A 53, 4534 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Paris, M.G.A., Mary, C., Rodolfo, B.: Quantum-state engineering assisted by entanglement. Phys. Rev. A 67, 042104 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Escher, B.M., Avelar, A.T., Baseia, B.: Synthesis of arbitrary Fock states via conditional measurement on beam splitters. Phys. Rev. A 72, 045803 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Jeong, H., Lance, A.M., Grosse, N.B., Symul, T., Lam, P.K., Ralph, T.C.: Conditional quantum-state engineering using ancillary squeezed-vacuum states. Phys. Rev. A 74, 033813 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Pegg, D.T., Phillips, L.S., Barnett, S.M.: Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Ozdemir, S.K., Miranowicz, A., Koashi, M., Imoto, N.: Quantum scissors device for optical state truncation: a proposal for practical realization. Phys. Rev. A 64, 063818 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Babichew, S.A., Ries, J., Lvovsky, A.I.: Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Goyal, S.K., Konrad, T.: Teleporting photonic qudits using multimode quantum scissors. Sci. Rep. 3, 3548 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Zhao, H.X., Xu, X.X., Yuan, H.C.: Thermal state truncation by using quantum-scissors device. Opt. Commun. 382, 127 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Xu, X.X., Hu, L.Y., Liao, Z.Y.: Improvement of entanglement via quantum scissors. J. Opt. Soc. Am. B 35, 174 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Lvovsky, A.I., Mlynek, J.: Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Bartley, T.J., Donati, G., Spring, J.B., Jin, X.M., Barbieri, M., Datta, A., Smith, B.J., Walmsley, I.A.: Multiphoton state engineering by heralded interference between single photons and coherent states. Phys. Rev. A 86, 043820 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Hu, L.Y., Wu, J.N., Liao, Z.Y., Zubairy, M.S.: Multiphoton catalysis with coherent state input: nonclassicality and decoherence. J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Xu, X.X.: Enhancing quantum entanglement and quantum teleportation for two-mode squeezed vacuum state by local quantum-optical catalysis. Phys. Rev. A 92, 012318 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Hu, L.Y., Liao, Z.Y., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95, 012310 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Fan, H.Y., Yang, Y.L.: Continuum variable entangled state generated by an asymmetric beam splitter. Eur. Phys. J. D 39, 107 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775 (1991)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  39. 39.
    Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    Li, J., Li, G., Wang, J.M., Zhu, S.Y., Zhang, T.C.: A comparison of two nonclassical measures, entanglement potential and the negativity of the Wigner function. J. Phys. B: At. Mol. Opt. Phys. 43, 085504 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Heng-Mei Li
    • 1
  • Xue-Xiang Xu
    • 2
  • Zhen Wang
    • 1
  • Zhi-Long Wan
    • 1
  • Xu-Ye Jun
    • 3
  1. 1.College of Mathematical Physics and Chemical EngineeringChangzhou Institute of TechnologyChangzhouChina
  2. 2.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  3. 3.Interdisciplinary Research Center of Quantum and Photoelectric InformationChizhou UniversityChizhouChina

Personalised recommendations