International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2843–2853 | Cite as

Electromagnetic Breathers and Periodic Loops in a Ferromagnet with the Uniaxial Anisotropy

  • Fenfen Yin
  • Bing TangEmail author


The nonlinear magnetization dynamics of an uniaxial anisotropy ferromagnet thin film under an external magnetic field is analytically studied. The celebrated Landau–Lifshitz equation depicts the magnetization dynamics of the anisotropy ferromagnetic thin film and the Maxwell’s equations govern the propagation dynamics of electromagnetic wave along the magnetic anisotropy axis. By means of a reductive perturbation approach, the dynamics equations of the system can be reduced as a modified Korteweg-de Vries equation, which exist a exact breather solution. We find that the excitations of magnetization of the ferromagnetic thin film and the magnetic induction and magnetic field of the electromagnetic wave can be governed by the breather mode. Our results show that the easy axis-component of the magnetization is a highly localized magnetized state in the form of the breather and the other-components of the magnetization are evolving like localized periodic loops when the breather mode is excited, which is very interesting. Up to now, few similar results have been reported.


Breathers Periodic loops Ferromagnet The uniaxial anisotropy 



This work was supported by the National Natural Science Foundation of China under Grant No. 11604121, by the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 16B210 and 16A170, and by the Natural Science Fund Project of Hunan Province under Grant No. 2017JJ3255.


  1. 1.
    Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Liu, W., Yang, C., Liu, M., Yu, W., Zhang, Y., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E 96, 042201 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Tang, B., Li, G.L., Fu, M.: Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy. J. Magn. Magn. Mater. 426, 429–434 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, L, Zhu, Y., Qi, F., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Guo, R., Liu, Y.-F., Hao, H.-Q., Qi, F.-H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560–1567 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523–534 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, L., Li, M., Qi, F.H., Xu, T.: Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Phys. Plasmas 22, 032308 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, R., Zhao, H.-H.: Effects of loss or gain terms on soliton and breather solutions in a couple fiber system. Nonlinear Dyn. 84, 933–941 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lü, X., Ma, W.X.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 85, 1217–1222 (2016)CrossRefGoogle Scholar
  12. 12.
    Lü, X., Ling, L.: Vector bright solitons associated with positive coherent coupling via Darboux transformation. Chaos 25, 123103 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ivanov, B.A., Galkin, A.Y., Khymyn, R.S., Merkulov, A.Y.: Nonlinear dynamics and two-dimensional solitons for spin-1 ferromagnets with biquadratic exchange. Phys. Rev. B 77, 064402 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Simonds, J.L.: Magnetoelectronics today and tomorrow. Phys. Today 48, 26 (1995)CrossRefGoogle Scholar
  15. 15.
    Skomski, R.: Nanomagnetics. J. Phys.: Condens. Matter 15, R841–R896 (2003)ADSGoogle Scholar
  16. 16.
    Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501–056700 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Khitun, A., Bao, M., Wang, K.L.: Magnonic logic circuits. J. Phys. D: Appl. Phys. 43, 264005 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Landau, L.D., Lifschitz, E.M.: Theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153–169 (1935)zbMATHGoogle Scholar
  20. 20.
    Li, Z.D., Li, Q.Y., He, P.B., Bai, Z.G., Sun, Y.: Interaction of a nonlinear spin-wave and magnetic soliton in a uniaxial anisotropic ferromagnet. Ann. Phys. (N. Y.) 322(12), 2945–2957 (2007)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, Z.D., Li, Q.Y., Xu, T.F., He, P.B.: Breathers and rogue waves excited by all-magnonic spin-transfer torque. Phys. Rev. E 94, 042220 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Li, Z.D., He, P.B., Liu, W.M.: Dynamics of magnetization in ferromagnet with spin-transfer torque. Chin. Phys. B 23, 117502 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Coullet, P., Riera, C., Tresser, C.: A new approach to data storage using localized structures. Chaos 14, 193–198 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Saravanan, M.: Current-driven electromagnetic soliton collision in a ferromagnetic nanowire. Phys. Rev. E 92, 012923 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Nakata, I.: Nonlinear modulated waves in a ferromagnet. J. Phys. Soc. Jpn. 60, 77–81 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Ono, H., Nakata, I.: Electromagnetic shock waves in the dielectric medium under an external magnetic field. J. Phys. Soc. Jpn. 68, 1838–1842 (1999)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Veerakumar, V., Daniel, M.: Electromagnetic soliton damping in a ferromagnetic medium. Phys. Rev. E 57, 1197–1200 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Kumar, V.S., Kavitha, L., Gopi, D.: Propagation of electromagnetic soliton in a spin polarized current driven weak ferromagnetic nanowire. J. Magn. Magn. Mater. 441, 660–671 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Sathishkumar, P., Vannan, R.S., Vijayalakshmi, S.: Origin of electromagnetic breatherlike soliton propagation in a ferromagnetic medium. Int. J. Nonlin. Sci. 21, 170–180 (2016)MathSciNetGoogle Scholar
  30. 30.
    Remoissenet, M.: Waves called solitons. Concepts and Experiments, 2nd edn., pp. 238–239 Springer-Verlag (1996)Google Scholar
  31. 31.
    Wang, L., Zhu, Y.J., Wang, Z.Z., Qi, F.H., Guo, R.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 33, 218–228 (2106)CrossRefGoogle Scholar
  32. 32.
    Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97–114 (2015)CrossRefzbMATHGoogle Scholar
  34. 34.
    Cai, L.Y., Wang, X., Wang, L., Li, M., Liu, Y., Shi, Y.Y.: Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrö,dinger equation with higher-order effects. Nonlinear Dyn. 90, 2221–2230 (2017)CrossRefGoogle Scholar
  35. 35.
    Kevrekidis, P.G., Khare, A., Saxena, A.: Breather lattice and its stabilization for the modified Korteweg–de Vries equation. Phys. Rev. E 68, 047701 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Vakhnenko, V.O., Parkes, E.J.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics and Electronic Engineering DepartmentTongren UniversityTongrenChina
  2. 2.College of Physics, Mechanical and Electrical EngineeringJishou UniversityJishouChina

Personalised recommendations