Influence of an External Classical Field on the Interaction Between a Field and an Atom in Presence of Intrinsic Damping
Article
First Online:
- 142 Downloads
Abstract
The effect of intrinsic damping on the interaction between a two-level atom and a multi-photon cavity field in the presence of an external classical field is studied. Under certain conditions and use of a transformation, the system is transformed to a generalized Jaynes Cummings model, with the influence of classical field included in the detuning parameter. The temporal evolution of some statistical aspects such as, the atomic inversion, the squeezing phenomena and linear entropy are obtained. In addition, we present the effects of the intrinsic damping and detuning parameters on the above mentioned quantities, for one and two photons. The entropy is used as a measure of the degree of entanglement, and consequently discussed.
Keywords
External classical field Atomic inversion Damping Linear entropy Variance squeezing Entropy squeezingReferences
- 1.Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)ADSMathSciNetCrossRefGoogle Scholar
- 2.Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
- 3.Moya-Cessa, H., Bužek, V., Kim, M.S., Knight, P.L.: Phys. Rev. A 48, 3900 (1993)ADSCrossRefGoogle Scholar
- 4.Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Phys. Rev. A 56, 3139 (1997)ADSCrossRefGoogle Scholar
- 5.Obada, A.S., Hessian, H.A.: JOSA B 21, 1535 (2004)ADSCrossRefGoogle Scholar
- 6.Xue-Qun, Y., Bin, S., Jian, Z.: Commun. Theor. Phys. 48, 63 (2007)ADSCrossRefGoogle Scholar
- 7.Abdel-Aty, M.: Phys. Lett. A 372, 3719 (2008)ADSCrossRefGoogle Scholar
- 8.Mohamed, A.B., Metwally, N.: Ann. Phys. 381, 137 (2017)ADSCrossRefGoogle Scholar
- 9.Mohamed, A.B.A.: Eur. Phys. J. D 71(10), 261 (2017)ADSCrossRefGoogle Scholar
- 10.Alqannas, H.S., Khalil, E.: Phys. A 489, 1 (2018)MathSciNetCrossRefGoogle Scholar
- 11.Anwar, S.J., Ramzan, M., Khan, M.K.: Quantum Inf. Process. 16(6), 142 (2017)ADSCrossRefGoogle Scholar
- 12.Abdel-Khalek, S., Zidan, N., Abdel-Aty, M.: Phys. E 44, 6 (2011)CrossRefGoogle Scholar
- 13.Furuichi, S., Ohya, M.: Lett. Math. Phys. 49, 279 (1999)MathSciNetCrossRefGoogle Scholar
- 14.Solano, E., Agarwal, G.S., Walther, H.: Phys. Rev. Lett. 90, 027903, 4p (2003)ADSCrossRefGoogle Scholar
- 15.Mohamed, A.B.A., Abdalla, M.S., Obada, A.S.F.: Eur. Phys. J. D 71(9), 223 (2017)ADSCrossRefGoogle Scholar
- 16.Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 326, 2486 (2011)ADSCrossRefGoogle Scholar
- 17.Khalil, E.: Int. J. Theor. Phys. 52, 1122 (2013)CrossRefGoogle Scholar
- 18.Moya-Cessa, H.: Phys. Rep. 432, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
- 19.Shore, B.W., Knight, P.L.: J. Mod. Opt. 40, 1195 (1993)ADSCrossRefGoogle Scholar
- 20.Obada, A.S.F., Hessian, H., Mohamed, A.B.: J. Phys. B 41, 135503, 7pp (2008)Google Scholar
- 21.Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 322, 2554 (2007)ADSCrossRefGoogle Scholar
- 22.Abdalla, M.S., Obada, A.S., Mohamed, A.B., Khalil, E.: Int. J. Theor. Phys. 53, 1325 (2014)CrossRefGoogle Scholar
- 23.Sánchez-Ruiz, J.: Phys. Lett. A 201, 125 (1995)ADSMathSciNetCrossRefGoogle Scholar
- 24.Fang, M., Zhou, P., Swain, S.: J. Mod. Opt. 47, 1043 (2000)ADSCrossRefGoogle Scholar
- 25.Zurek, W.H., Habib, S., Paz, J.P.: Phys. Rev. Lett. 70, 1187 (1993)ADSCrossRefGoogle Scholar
- 26.Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J Phys. A 34, 9129 (2001)ADSMathSciNetCrossRefGoogle Scholar
- 27.Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J. Opt. B 4, 134 (2002)ADSCrossRefGoogle Scholar
- 28.Phoenix, S., Knight, P.: Ann. Phys. 186, 381 (1988)ADSCrossRefGoogle Scholar
- 29.Phoenix, S.J.D., Knight, P.L.: Phys. Rev. A 44, 6023 (1991)ADSCrossRefGoogle Scholar
- 30.Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018