Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2767–2774 | Cite as

Quantum Properties of the State via Operation of Superposition of Photon Subtraction Two Times and Photon Addition Two Times on Two Modes Squeezing Vacuum State

  • Dao-Ming Lu
Article

Abstract

Superposition of photon subtraction two times and photon addition two times excited two modes squeezing vacuum state (SPSAESVT) is introduced, which is generated by operation of superposition of annihilation operator and creation operator on two modes squeezed vacuum state. Non-classical properties of SPSAESVT, such as squeezing effect, anti-bunching effect, the violation of Cauchy-Schwartze inequality and the entanglement property between two modes, are investigated. Using numerical methods, the influences of the superposition coefficient of operators and that of squeezing parameter on its non-classical properties are discussed. The results show that SPSAESVT does not display antibunching effect, but it displays squeezing effect, and there are the violation of Cauchy-Schwartze inequality and the entanglement between two modes. Further, its squeezing effect is not affected by the superposition coefficient of the operators, but there is a nonlinear relationship both between the violation of Cauchy-Schwartze inequality and the superposition coefficient, and between the entanglement property and the superposition coefficient. As squeezing parameter increases, its squeezing effect and entanglement property are strengthened, but the violation of Cauchy-Schwartze inequality is weakened.

Keywords

Quantum optics Superposition of photon subtraction and photon addition Two modes squeezing vacuum state Quantum properties 

Mathematics Subject Classification (2010)

42.50 03.65 

Notes

Acknowledgments

This work is supported by the Natural Science Foundation of Fujian Province of China Under Grant No.2015J01020.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., et al.: Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Verlot, P., Tavernarakis, A., et al.: Phys. Rev. Lett. 104, 133602 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Purdy, TP, Yu, PL, et al.: Phys. Rev. X 3, 031012 (2013)Google Scholar
  4. 4.
    Agarwal, G.S., Tara, K.: Phys. Rev. A 43, 492 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Ma, SJ, Luo, W.W.: Chin. Phys. B 21, 024203 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, Z, Li, H.M., Yuan, H.C., et al.: Int. J. Theor. Phys. 56, 729 (2017)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Yuan, H.C., Xu X.F.: Opt. Commun. 298-299, 154 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, XX, Yuan, H., Wang, Y.: Chin. Phys. B 23, 070301 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, H.L., Wu, J.N., Liu, C.J., et al.: Int. J. Theor. Phys. 56, 652 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, S, Hou, LL, Xu, X.F.: Opt. Commun. 335, 108 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Hu, L.Y., Xu, X.X., Wang, Z.S., et al.: Phys. Rev. A 82, 043828 (2010)CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Fan, H.Y., Song, J.: Int. J. Theor. Phys. 51, 1591 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhou, J., Song, J., Yuan, H., et al.: Chin. Phys. Lett. 29, 050301 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Wenger, J., Tualle-brouri, R., Grangier, P.: Phys. Rev. Lett. 92, 153601 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Lee, S.Y., Nha, H.: Phys. Rev. A 82, 053812 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Cai, Z.B., Zhou, B.Y., Wang, Z.Y., et al.: Opt. Commun. 311, 229 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Lee, S.Y., Hyunchul, N.H.A.: Phys. Rev. A 85, 043816 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Hillery, M., Zubairy, M.S.: Phys. Rev. Lett. 96, 050503 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanic and Electronic EngineeringWuyi UniversityWuyishanPeople’s Republic of China

Personalised recommendations