International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2738–2747 | Cite as

Fermion Anti-fermion Interaction in a Linearized Quantum Gravity

  • Azizollah Azizi
  • Tahere Olyaei


Using the linearized gravity in the weak field regime and applying the quantum field theory prescription, the study of the gravitational interactions of massless fermions (neutrinos) in tree-level and through the u- and t-channels has been investigated before, but the gravitational interaction through the s-channel has not taken into account yet. In this paper, we calculate the cross section for the gravitational interaction of a fermion-anti-fermion pair to another pair of fermion-anti-fermion in tree level, that is purely an s-channel interaction, and compare it with the electromagnetic analogous.


Quantum gravity-gravitational interaction-cross section 


  1. 1.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 CrossRefzbMATHGoogle Scholar
  2. 2.
    Donoghue, J.F.: General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874 (1994). arXiv:gr-qc/9405057v1 ADSCrossRefGoogle Scholar
  3. 3.
    Donoghue, J.F.: Leading quantum correction to the newtonian potential. Phys. Rev. Lett. 72, 2996 (1994). arXiv:gr-qc/9310024v2 ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, S.N.: Quantization of einstein’s gravitational field: linear approximation. Proc. Phys. Soc. A 65, 161 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683 (1954)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barker, B.M., Bhatia, M.S., Gupta, S.N.: Gravitational scattering of light by light. Phys. Rev. 158, 1498 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Boccaletti, D., De Sabbata, V., Gualdi, C., Fortini, P.: Photon-Photon Scattering and Photon-Scalar particle scattering via gravitational interaction (One-Graviton exchange) and comparison of the processes between classical (General-Relativistic) theory and the quantum linearized field theory. Nuov. Cim. B 64, 419 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    Lawrence, J.K.: Gravitational fermion interactions. Gen. Rel. Grav. 2, 215 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Olyaei, T., Azizi, A.: Weak gravitational interaction of fermions: quantum viewpoint. arXiv:1804.06939
  10. 10.
    Peet, F.G.: Cross sections for the scattering of massless particles by graviton exchange. Can. J. Phys. 48, 923 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Boccaletti, D., De Sabbata, V., Fortini, P., Gualdi, C.: Gravitational scattering of two- and Four-Component neutrinos. Some remarks in the One-Graviton-Exchange approximation. Nuov. Cim. B 11, 289 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    Voronov, N.A.: Gravitational compton effect and photoproduction of gravitons by electrons,. Zh. Eksp. Teor Fiz. 64, 1889 (1973)Google Scholar
  13. 13.
    Skobelev, V.V.: Graviton-Photon interaction. Sov. Phys. J. 18, 62 (1975)CrossRefGoogle Scholar
  14. 14.
    Choi, S.Y., Shim, J.S., Song, H.S.: Factorization and polarization in linearized gravity. Phys. Rev. D 51, 2751 (1995). arXiv:hep-th/9411092 ADSCrossRefGoogle Scholar
  15. 15.
    Holstein, B.R.: Graviton physics. Am. J. Phys. 74, 1002 (2006). arXiv:gr-qc/0607045 ADSCrossRefGoogle Scholar
  16. 16.
    Bjerrum-Bohr, N.E.J., Holstein, B.R., Plante, L., Vanhove, P.: Graviton-Photon scattering. Phys. Rev. D 91(6), 064008 (2015). arXiv:1410.4148 ADSCrossRefGoogle Scholar
  17. 17.
    Ravndal, F., Sundberg, M.: Graviton-Photon conversion on spin 0 and 1/2 particles. Int. J. Mod. Phys. A 17, 3963 (2002)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York (1972)Google Scholar
  19. 19.
    Butt, M.S.: Leading quantum gravitational corrections to QED. Phys. Rev. D 74, 125007 (2006). arXiv:gr-qc/0605137 ADSCrossRefGoogle Scholar
  20. 20.
    Halzen, F., Martin, A.D.: Quarks and leptons: an introduction course in modern particle physics. Wiley, New York (1984)Google Scholar
  21. 21.
    Jamin, M., Lautenbacher, M.E.: TRACER version 1.1: A MATHEMATICA package for γ-Algebra in arbitrary dimensions. Comput. Phys. Commun. 74, 288 (1993)CrossRefGoogle Scholar
  22. 22.
    Peskin, M.E., Schroeder, D.V.: An introduction to quantum field theory. Perseus Books Publishing, New York (1995)Google Scholar
  23. 23.
    LIGO Scientific Collaboration, Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:gr-qc/1602.03837 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, College of SciencesShiraz UniversityShirazIran

Personalised recommendations