Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2738–2747 | Cite as

Fermion Anti-fermion Interaction in a Linearized Quantum Gravity

  • Azizollah Azizi
  • Tahere Olyaei
Article

Abstract

Using the linearized gravity in the weak field regime and applying the quantum field theory prescription, the study of the gravitational interactions of massless fermions (neutrinos) in tree-level and through the u- and t-channels has been investigated before, but the gravitational interaction through the s-channel has not taken into account yet. In this paper, we calculate the cross section for the gravitational interaction of a fermion-anti-fermion pair to another pair of fermion-anti-fermion in tree level, that is purely an s-channel interaction, and compare it with the electromagnetic analogous.

Keywords

Quantum gravity-gravitational interaction-cross section 

References

  1. 1.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014). arXiv:1403.7377 CrossRefMATHGoogle Scholar
  2. 2.
    Donoghue, J.F.: General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874 (1994). arXiv:gr-qc/9405057v1 ADSCrossRefGoogle Scholar
  3. 3.
    Donoghue, J.F.: Leading quantum correction to the newtonian potential. Phys. Rev. Lett. 72, 2996 (1994). arXiv:gr-qc/9310024v2 ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, S.N.: Quantization of einstein’s gravitational field: linear approximation. Proc. Phys. Soc. A 65, 161 (1952)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683 (1954)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barker, B.M., Bhatia, M.S., Gupta, S.N.: Gravitational scattering of light by light. Phys. Rev. 158, 1498 (1967)ADSCrossRefGoogle Scholar
  7. 7.
    Boccaletti, D., De Sabbata, V., Gualdi, C., Fortini, P.: Photon-Photon Scattering and Photon-Scalar particle scattering via gravitational interaction (One-Graviton exchange) and comparison of the processes between classical (General-Relativistic) theory and the quantum linearized field theory. Nuov. Cim. B 64, 419 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    Lawrence, J.K.: Gravitational fermion interactions. Gen. Rel. Grav. 2, 215 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Olyaei, T., Azizi, A.: Weak gravitational interaction of fermions: quantum viewpoint. arXiv:1804.06939
  10. 10.
    Peet, F.G.: Cross sections for the scattering of massless particles by graviton exchange. Can. J. Phys. 48, 923 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Boccaletti, D., De Sabbata, V., Fortini, P., Gualdi, C.: Gravitational scattering of two- and Four-Component neutrinos. Some remarks in the One-Graviton-Exchange approximation. Nuov. Cim. B 11, 289 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    Voronov, N.A.: Gravitational compton effect and photoproduction of gravitons by electrons,. Zh. Eksp. Teor Fiz. 64, 1889 (1973)Google Scholar
  13. 13.
    Skobelev, V.V.: Graviton-Photon interaction. Sov. Phys. J. 18, 62 (1975)CrossRefGoogle Scholar
  14. 14.
    Choi, S.Y., Shim, J.S., Song, H.S.: Factorization and polarization in linearized gravity. Phys. Rev. D 51, 2751 (1995). arXiv:hep-th/9411092 ADSCrossRefGoogle Scholar
  15. 15.
    Holstein, B.R.: Graviton physics. Am. J. Phys. 74, 1002 (2006). arXiv:gr-qc/0607045 ADSCrossRefGoogle Scholar
  16. 16.
    Bjerrum-Bohr, N.E.J., Holstein, B.R., Plante, L., Vanhove, P.: Graviton-Photon scattering. Phys. Rev. D 91(6), 064008 (2015). arXiv:1410.4148 ADSCrossRefGoogle Scholar
  17. 17.
    Ravndal, F., Sundberg, M.: Graviton-Photon conversion on spin 0 and 1/2 particles. Int. J. Mod. Phys. A 17, 3963 (2002)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Weinberg, S.: Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York (1972)Google Scholar
  19. 19.
    Butt, M.S.: Leading quantum gravitational corrections to QED. Phys. Rev. D 74, 125007 (2006). arXiv:gr-qc/0605137 ADSCrossRefGoogle Scholar
  20. 20.
    Halzen, F., Martin, A.D.: Quarks and leptons: an introduction course in modern particle physics. Wiley, New York (1984)Google Scholar
  21. 21.
    Jamin, M., Lautenbacher, M.E.: TRACER version 1.1: A MATHEMATICA package for γ-Algebra in arbitrary dimensions. Comput. Phys. Commun. 74, 288 (1993)CrossRefGoogle Scholar
  22. 22.
    Peskin, M.E., Schroeder, D.V.: An introduction to quantum field theory. Perseus Books Publishing, New York (1995)Google Scholar
  23. 23.
    LIGO Scientific Collaboration, Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:gr-qc/1602.03837 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, College of SciencesShiraz UniversityShirazIran

Personalised recommendations