International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2709–2721 | Cite as

An Arbitrated Proxy Blind Signature Based on Hyper Entanglement Analysis

  • Xiaoping LouEmail author
  • Wensheng Tang
  • Hua Ma
  • Ming Yi


Motivated by the hyperentangled Bell states analysis, an arbitrated quantum proxy blind signature (QPBS) scheme is developed. Four participants accomplish the task of signing and verifying via exchanging the entanglement of polarization and spatial-mode degrees of freedom. Alice blinds message and sends it to a proxy signatory David who is delegated by the original signatory Charlie. David generates a signature using the delegating code while Bob verifies the signing with the help of an arbitrator Trent. Unlike previous schemes, the verifying phase is no longer executed only by a recipient. Analysis shows that when the even numbers of blinding string always equal 1, the scheme protects the proxy blind signature against forgery and disavow while maintaining the properties of verifiability and identifiability.


Quantum optics Blind signature Proxy signature Hyper entanglement 



Project supported by National Natural Science Foundation of China (61602172), National Natural Science Foundation of Hunan Province (2017JJ3223), Science and technology project of Hunan province department of education (16B179).


  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. ACM (1983)Google Scholar
  2. 2.
    Grover, Lov, K.: A fast quantum mechanical algorithm for database search. In: Proc. Symp. on the Theory of Computing, pp. 212–219 (1996)Google Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Quantum Entanglement and Quantum Information–Proceedings of Ccast, pp. 303–332 (1999)Google Scholar
  4. 4.
    Zhou, N.R., Li, J.F., Zhen Bo, Y., Li, H.G., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process 16(1), 4 (2017)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett, Charles H., Wiesner, Stephen J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Physica Scripta 89(89), 035101 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, J., Li, L., Peng, H., Yang, Y: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev., 95(2) (2017)Google Scholar
  9. 9.
    Ouyang, Y, Tan, S.H., Zhao, L., Fitzsimons, J.F.: Computing on quantum shared secrets. Phys. Rev., 96(5) (2017)Google Scholar
  10. 10.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev., 65(3) (2002)Google Scholar
  11. 11.
    Cao, Z.W., Feng, X.Y., Peng, J.Y., Zeng, G.H., Qi, X.F.: Quantum secure direct communication scheme in the non-symmetric channel with high efficiency and security. Int. J. Theor. Phys. 54(6), 1871–1877 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cao, Z.W., Feng, X.Y., Peng, J.Y., Zeng, G.H., Qi, J.: Efficient quantum private communication based on dynamic control code sequence. Int. J. Theor. Phys. 56(4), 1–9 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev., 65(4) (2002)Google Scholar
  14. 14.
    Mambo, M, Usuda, K, Okamoto, E.: Proxy signatures: Delegation of the power to sign messages. Ieice Trans. Fund. 79(9), 1338–1354 (1996)Google Scholar
  15. 15.
    Chaum, D: Blind signatures for untraceable payments. In: Advances in Cryptology. Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August 199–203 (1982)Google Scholar
  16. 16.
    Cao, H.J., Zhu, Y.Y., Li, P.F.: A quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 53(2), 419–425 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shi, J.J., Shi, R.H., Guo, Y., Peng, X.Q., Tang, Y.: Batch proxy quantum blind signature scheme. Sci. Chin. (Inf. Sci.) 56(5), 1–9 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cai, X.Q., Yu, H.Z., Zhang, R.L.: Cryptanalysis of a batch proxy quantum blind signature scheme. Int. J. Theor. Phys. 53(9), 3109–3115 (2014)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tian, Y., Chen, H., Yan, G., Tian, J., Wen, X.: A proxy blind signature scheme based on quantum entanglement. Opt. Quant. Electron. 45(12), 1297–1305 (2013)CrossRefGoogle Scholar
  20. 20.
    Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, L., Zhang, H.Y., Ke, J.Z., Wang, Q.L.: The security analysis and improvement of some novel quantum proxy signature schemes. Int. J. Theor. Phys. 56 (6), 1983–1994 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cao, H.J., Huang, J., Yu, Y.F., Jiang, X.L.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)CrossRefzbMATHGoogle Scholar
  23. 23.
    Cao, H.J., Yu, Y.F., Song, Q., Gao, L.X.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54 (4), 1325–1333 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ke, J.Z., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Cao, H.J., Zhang, J.F., Liu, J., Li, Z.Y.: A new quantum proxy multi-signature scheme using maximally entangled seven-qubit states. Int. J. Theor. Phys. 55(2), 774–780 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ai, X.S., Zhang, J.Z., Xie, S.C.: An e-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56(4), 1–8 (2017)zbMATHGoogle Scholar
  27. 27.
    Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95(26), 260501 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Yu, B.S., Fu, G.D.: Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 537–542 (2012)Google Scholar
  29. 29.
    Simon, C, Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(25), 257901 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Yu, B.S., Fu, G.D., Long, G.L.: Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 82(3), 10334–10338 (2012)Google Scholar
  31. 31.
    Fan, L.-L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon greenberger–horne–zeilinger states analysis with cross-kerr nonlinearity. Opt. Commun. 317(8), 102–106 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with. hyperentanglement 28(4), 040305–1171 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information Science and EngineeringHunan Normal UniversityChangshaChina
  2. 2.Hunan Province Cooperative Innovation Center for The Construction and Development of Dongting Lake Ecological Economic ZoneChangdeChina

Personalised recommendations