Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2695–2708 | Cite as

Offline Arbitrated Quantum Blind Dual-Signature Protocol with Better Performance in Resisting Existential Forgery Attack

  • Hong-Wei Sun
  • Long Zhang
  • Hui-Juan Zuo
  • Ke-Jia Zhang
  • Chun-Guang Ma
Article

Abstract

In this paper, we present an offline arbitrated quantum blind dual-signature protocol by using four-particle entangled Greenberger-Horne-Zeilinger(GHZ) states. By using the special relationship of four-particle GHZ states, we can not only support the security of quantum signature, but also guarantee the anonymity of the message owner. In our protocol, the authority of the arbitrator has been reduced, i.e., he will not help the receiver verify the signature in the verification. Compared with the previous quantum blind signature protocols, the presented arbitrator is offline. Finally, the security analysis and discussion are proposed.

Keywords

Offline arbitrated signature Quantum blind signature GHZ states 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No.11647128, 61402148), the Natural Science Foundation of Heilongjiang Province (Grant No.A2016007), Hei Long Jiang Postdoctoral Foundation (Grant No.LBHZ17048), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province supported by Kejia Zhang, the Heilongjiang University Innovation Fund for Graduates (Grant No.YJSCX2017-063HLJU), Youth Foundation of Heilongjiang University (Grant No.QL201501) and Natural Science Foundation of Hebei Province (Grant No.F2015205114).

References

  1. 1.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043v3 (1996)
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack[J]. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of Guantum-Oblivious-Key-Transfer-Based private guery with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)CrossRefGoogle Scholar
  10. 10.
    Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query[J]. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, X.B., Niu, X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032v2 (2001)
  19. 19.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of quantum messages, pp. 449–458. IEEE Computer Society Press, Washington, DC (2002)Google Scholar
  21. 21.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols[J]. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Hwang, T., Luo, Y.P., Chong, S.: Comment on: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Cai, Q.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible[J]. Quantum Inf. Process. 12(9), 3127–3141 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89, 015102 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature Protocols[J]. Int. J. Theor. Phys., 1–12 (2017)Google Scholar
  34. 34.
    Zhang, L., Zhang, H.Y., Zhang, K.J., et al.: The security analysis and improvement of some novel quantum proxy signature Schemes[J]. Int. J. Theor. Phys., 1–12 (2017)Google Scholar
  35. 35.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack[J]. Quantum Inf. Process. 12(8), 2655–2669 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption[J]. Quantum Inf. Process. 16(3), 70 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Chaum, D.: Blind Signature for Untraceable Payments Advances in Cryptology, Proceeding of Cryptology, vol. 82, pp. 199–203. Springer, New York (1982)Google Scholar
  38. 38.
    Zeng, G., Ma, W., Wang, X., Zhu, H.-W.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098–1100 (2001)Google Scholar
  39. 39.
    Wang, J.-H., Liu, J.-W., Li, X.-H., Kou, W.-D.: Fair e-payment protocol based on blind signature. J. China Univ. Posts Telecommun. 16(5), 114–118 (2009)CrossRefGoogle Scholar
  40. 40.
    Ibrahim, S., Kamat, M., Salleh, M., Aziz, S.R.A.: Secure E-voting with blind signature. In: NCTT 2003 Proceedings of the 4th National Conference on Telecommunication Technology. IEEE (2003)Google Scholar
  41. 41.
    Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Fan, L., Zhang, K.J., Qin, S.J., et al.: A novel quantum blind signature scheme with four-particle GHZ States[J]. Int. J. Theor. Phys. 55(2), 1028–1035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zuo, H., Zhang, K., Song, T.: Security analysis of quantum multi-signature protocol based on teleportation[J]. Quantum Inf. Process. 12(7), 2343–2353 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zuo, H.: Cryptanalysis of quantum blind signature scheme[J]. Int. J. Theor. Phys. 52(1), 322–329 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Li, W., Shi, R., Huang, D., et al.: Quantum blind dual-signature scheme without arbitrator[J]. Phys. Scripta 91(3), 035101 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong-Wei Sun
    • 1
  • Long Zhang
    • 1
    • 2
  • Hui-Juan Zuo
    • 3
  • Ke-Jia Zhang
    • 1
    • 2
    • 4
  • Chun-Guang Ma
    • 4
  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex SystemsHeilongjiang UniversityHarbinChina
  3. 3.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhuangChina
  4. 4.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations