Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2676–2686 | Cite as

A Choreographed Distributed Electronic Voting Scheme

  • Jia-Lei Zhang
  • Jian-Zhong Zhang
  • Shu-Cui Xie
Article

Abstract

In this paper, we propose a choreographed distributed electronic voting scheme, which is based on quantum group blind signature. Our distributed electronic voting scheme could really protect the message owner’s privacy and anonymity which the classical electronic voting systems can not provide. The electors can exercise their voting rights effectively, and no one other than the tallyman Bob knows the contents of his vote. Moreover, we use quantum key distribution protocol and quantum one-time pad to guarantee its unconditional security. Furthermore, when there was a dispute, the group supervisor David can detect the source of the signature based on the signature’s serial number \(SN\).

Keywords

Distributed electronic voting scheme Quantum group blind signature Four-qubit cluster state Unconditional security 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No. GK201402004).

References

  1. 1.
    Gritzalis, D.: Secure electronic voting. In: 7th Computer Security Incidents Response Teams Workshop Syros, Greece (2002)Google Scholar
  2. 2.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Shao, A.X., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy multi-blind-signature scheme based on genuine six-qubit entangled state. Int. J. Theor. Phys. 55, 5216–5224 (2016)CrossRefMATHGoogle Scholar
  4. 4.
    Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron. Lett. 32(9), 811–813 (1996)CrossRefGoogle Scholar
  5. 5.
    Yang, Y.Y., Zhang, J.Z., Xie, S.C.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys. 56 (7), 2293–2302 (2017)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron. Lett. 31(14), 1136–1137 (1995)CrossRefGoogle Scholar
  7. 7.
    Lysyanskaya, A., Ramzan, Z.: Group blind digital signature: a scalable solution to electronic cash. In: Proceedings of the 2nd Financial Cryptography Conference (1998)Google Scholar
  8. 8.
    Mohammed, E., Emarah, A.E., El-Shennawy, K.: A Blind Signature Scheme Based on Elgamal Signature. In: EURO-COMM 2000. Information Systems for Enhanced Public Safety and Security, pp 51–53. IEEE/AFCEA (2000)Google Scholar
  9. 9.
    Chien, H., Jan, J., Tseng, Y.: Eighth international conference on parallel and distributed systems (ICPADS01) 44 (2001)Google Scholar
  10. 10.
    Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process. 14(7), 2577–2587 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt. Eng.  https://doi.org/10.1117/2.1200610.0419 (2006)
  12. 12.
    Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Wen, X.J., Cai, X.J.: Secure quantum voting protocol. Shangdong Univ. (Natural Science) 46(9), 9–13 (2011)MathSciNetGoogle Scholar
  14. 14.
    Yi, Z., He, G.Q., Zeng, G.H.: Quantum voting protocol using two-mode squeezed states. Acta Phys. Sin. 58(5), 3166–3172 (2009)Google Scholar
  15. 15.
    Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375(8), 1172–1175 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cao, H.J., Ding, L.Y., Yu, Y.F., et al.: An electronic voting system achieved by using quantum proxy sinature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)CrossRefMATHGoogle Scholar
  18. 18.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, pp 175–179. IEEE (1984)Google Scholar
  19. 19.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)MathSciNetMATHGoogle Scholar
  21. 21.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Qi, J.X.: Quantum detection of a four-qubit entangled states. J. Xian University Posts Telecommun. 18(5), 63–65 (2013)Google Scholar
  23. 23.
    Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Deng, F.G., Long, G.L., et al.: Two-step quantum direct communication using the Einstein-podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Lett. 21, 601–603 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with x-type entangled states. Phys. Rev. A 78(6), 064304 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Cao, H.J., Ding, L.Y., Jiang, X.L., et al.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57(3), 674–681 (2018)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations