International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2657–2664 | Cite as

A Trusted Third-Party E-Payment Protocol Based on Quantum Blind Signature Without Entanglement

  • Xi Guo
  • Jian-Zhong ZhangEmail author
  • Shu-Cui Xie


In this paper, we present a trusted third-party e-payment protocol which is designed based on quantum blind signature without entanglement. The security and verifiability of our scheme are guaranteed by using single-particle unitary operation, quantum key distribution (QKD) protocol and one-time pad. Furthermore, once there is a dispute among the participants, it can be solved with the assistance of the third-party platform which is reliant.


Third-party e-payment protocol Quantum blind signature Single-particle unitary operation 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant Nos. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities (Grant No. GK201402004).


  1. 1.
    Chaum, D.: Blind Signature for Untraceable Payments. Advances in Cryptology-Crypto 82, pp. 199–203. Springer, New York (1982)Google Scholar
  2. 2.
    Chaum, D., Heyst, E.: Group Signatures. Advances in Cryptology-Eurocrypt’91. LNCS 547, pp. 257–265. Springer, Berlin (1991)zbMATHGoogle Scholar
  3. 3.
    Maitland, G., Boyd, C.: Fair Electronic Cash Based on a Group Signature Scheme. ICICS 2001, LNCS 2229, pp. 461–465. Springer, Berlin (2001)zbMATHGoogle Scholar
  4. 4.
    Canard, S., Traor, J.: On Fair E-Cash Systems Based on Group Signature Schemes. ACISP 2003, LNCS 2727, pp. 237–248. Springer, Berlin (2003)Google Scholar
  5. 5.
    Traor, J.: Group Signatures and Their Relevance to Privacy-Protecting Offline Electronic Cash Systems. ACISP99, LNCS 1587, pp. 228–243. Springer, Berlin (1999)Google Scholar
  6. 6.
    Qiu, W., Chen, K., Gu, D.: A New Off-Line Privacy Protecting E-Cash System with Revocable Anonymity. ISC 2002, LNCS 2433, pp. 177–190. Springer, Berlin (2002)Google Scholar
  7. 7.
    Wang, T.Y., Cai, X.Q., Zhang, J.Z.: Off-line e-cash system with multiple banks based on elliptic curve. Comput. Eng. Appl. 33(15), 155–157 (2007)Google Scholar
  8. 8.
    Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: a Scalable Solution to Electronic Cash. FC’98, LNCS 1465, pp. 184–197. Springer, Berlin (1998)Google Scholar
  9. 9.
    Fan, L., Zhang, K.J., Qin, S.J., et al.: A novel quantum blind signature scheme with four-particle GHZ states. Int. J. Theor. Phys. 55(2), 1–8 (2015)MathSciNetGoogle Scholar
  10. 10.
    Wen, X.J., Nie, Z.: An e-payment system based on quantum blind and group signature. Phys. Scr. 82(6), 5468–5478 (2010)Google Scholar
  11. 11.
    Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum. Inf. Process. 12(1), 549–558 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank e-payment protocol based on quantum proxy blind signature. Quantum. Inf. Process. 12(4), 1651–1657 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhou, R.G., Li, W., Huan, T.T., et al.: An online banking system based on quantum cryptography communication. Int. J. Theor. Phys. 53(7), 1–14 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yang, Y.Y., Zhang, J.Z., Xie, S.C.: A third-party e-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D. 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 645–648 (2003)CrossRefGoogle Scholar
  19. 19.
    Shao, A.X., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy multi-blind-signature scheme based on genuine six-qubit entangled state. Int. J. Theor. Phys. 55(12), 5216–5224 (2016)CrossRefzbMATHGoogle Scholar
  20. 20.
    Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56(6), 1762–1770 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron. Lett. 31(14), 1136–1137 (1995)CrossRefGoogle Scholar
  23. 23.
    Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Xu, G.B., Wen, Q.Y., Gao, F., et al.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum. Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shao, A.X., Zhang, J.Z., Xie, S.C.: An E-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56(4), 1–8 (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations