International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2648–2656 | Cite as

New Quantum Key Distribution Scheme Based on Random Hybrid Quantum Channel with EPR Pairs and GHZ States

  • Xing-Yu Yan
  • Li-Hua Gong
  • Hua-Ying Chen
  • Nan-Run ZhouEmail author


A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.


Quantum key distribution Random hybrid quantum channel Quantum dense coding Quantum cryptography 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61561033 and 61462061), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social security of Jiangxi Province, the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).


  1. 1.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India, pp 175–179 (1984)Google Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, W., Ding, D.S., Sheng, Y.B.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Nguyen, B.A.: Quantum dialogue. Phys. Rev. A 328, 6–10 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Zhou, N.R., Li, J.F., Yu, Z.B.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mattle, K., Weinfurter, H., Kwiat, P.G.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schmid, C., Trojek, P., Bourennane, M.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Li, C.Y., Zhou, H.Y., Wang, Y.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Gong, L.H., Song, H.C., He, C.S.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89, 022315 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Ma, H.X., Huang, P., Bai, D.Y., Wang, S.Y., Bao, W.S., Zeng, G.H.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97, 042329 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett 102, 180504 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Scarani, V., Bechmann, P.H., Cerf, N.J.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Niu, M.Y., Xu, F., Shapiro, J.H.: Finite-key analysis for time-energy high-dimensional quantum key distribution. Phys. Rev. A 94, 052323 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Stucki, D., Gisin, N., Guinnard, O.: Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4, 41.1–41.8 (2002)CrossRefGoogle Scholar
  24. 24.
    Wang, S., Yin, Z.Q., Chen, W.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon. 9, 832–836 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Liao, S.K., Yong, H.L., Liu, C.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 116 (2017)CrossRefGoogle Scholar
  26. 26.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    El, A.A., El, B.M., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Epping, M., Kampermann, H., Bruß, D.: Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Lee, H., Ahn, D., Hwang, S.W.: Dense coding in entangled states. Phys. Rev. A 66, 024304 (2002)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of its unconditional security. J. Crypt. 18, 133–165 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Deutsch, D., Ekert, A., Jozsa, R.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Pan, J.W., Simon, C., Brukner, Č.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xing-Yu Yan
    • 1
  • Li-Hua Gong
    • 1
    • 2
  • Hua-Ying Chen
    • 3
  • Nan-Run Zhou
    • 1
    • 2
    Email author
  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of PhysicsNanchang UniversityNanchangChina

Personalised recommendations