International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2598–2614 | Cite as

Fault-Tolerant Design of a Shift Register at the Nanoscale Based on Quantum-dot Cellular Automata

  • Sonia Afrooz
  • Nima Jafari NavimipourEmail author


Quantum-dot Cellular Automata (QCA) as a novel technology in the nanometer scale has been considered as one of the substitutes to CMOS technology. The QCA helps to create faster computers with lower power consumption. On the other hand, a shift register as one of the most important logical circuit in the digital systems consists of a line of latches. Also, the QCA-based designs have more advantages compared to the conventional CMOS designs. However, some deposition defects are possible to occur in the QCA-based designs, which have necessitated the fault-tolerant structures. Therefore, this paper aims to design an optimized 2-bit universal shift register based on QCA technology through the optimized multiplexer and D flip-flop. This paper studies the functionality and the fault tolerance of the proposed universal shift register in the presence of the QCA deposition faults. The structure of the 2-bit universal register is extendable to 4-bit, 8-bit and higher. The proposed design has better performance regarding fault tolerant, complexity and area consumption compared to the current designs based on the achieved results via QCADesigner.


Universal shift register Quantum-dot cellular automata (QCA) Fault-tolerant Multiplexer 


  1. 1.
    Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)CrossRefzbMATHGoogle Scholar
  2. 2.
    Gadim, M.R., Navimipour, J.N.: Quantum-dot Cellular Automata in Designing the Arithmetic and Logic Unit Systematic Literature Review Classiffication and Current Trends. J. Circ. Syst. Comput. 27(10), 1830005 (2018)CrossRefGoogle Scholar
  3. 3.
    Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on Nano-scale based on quantum-dot cellular automata for energy dissipation improving. Optik - International Journal for Light and Electron Optics (2018)Google Scholar
  4. 4.
    Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gupta, N., Choudhary, K., Katiyal, S.: Two bit arithmetic logic unit (ALU) in QCA. Int. J. Recent Trends Eng. Technol. 8(2), 35 (2013)Google Scholar
  6. 6.
    Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process 13(9), 2127–2147 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik - Int. J. Light Electron Opt. 158, 243–256 (2018)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1–11 (2018)CrossRefGoogle Scholar
  9. 9.
    Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik - Int. J. Light Electron Opt. 130, 981–989 (2017)CrossRefGoogle Scholar
  10. 10.
    Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)CrossRefGoogle Scholar
  11. 11.
    Khan, A., Chakrabarty, R., De, D.: Static hazard elimination for a logical circuit using quantum dot cellular automata. Microsyst. Technol. 23(9), 4169–4177 (2017)CrossRefGoogle Scholar
  12. 12.
    Afrooz, S., Navimipour, N.J.: Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends. J. Circ. Syst. Comput. 26, 1730004 (2017)CrossRefGoogle Scholar
  13. 13.
    Naji Asfestani, M., Rasouli Heikalabad, S.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y. et al.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theory Appl. 44(7), 1351–1366 (2016)CrossRefGoogle Scholar
  15. 15.
    Hopfield, J., Onuchic, J.N., Beratan, D.N.: A molecular shift register based on electron transfer. Science 241(4867), 817–820 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)CrossRefzbMATHGoogle Scholar
  17. 17.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRefGoogle Scholar
  18. 18.
    Momenzadeh, M., et al.: Quantum cellular automata: New defects and faults for new devices. In: Proceedings of 18th International on Parallel and Distributed Processing Symposium, IEEE (2004)Google Scholar
  19. 19.
    Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes symposium on VLSI, ACM (2008)Google Scholar
  20. 20.
    Taskin, B. et al.: A shift-register-based QCA memory architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 5(1), 4 (2009)MathSciNetGoogle Scholar
  21. 21.
    Katti, R., Shrestha, S.: Novel Asynchronous Registers for Sequential Circuits with Quantum-Dot Cellular Automata. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE (2012)Google Scholar
  22. 22.
    Purkayastha, T., De, D., Chattopadhyay, T.: Universal shift register implementation using quantum dot cellular automata. Ain Shams Engineering Journal (2016)Google Scholar
  23. 23.
    Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23 (9), 4155–4168 (2017)CrossRefGoogle Scholar
  24. 24.
    Katti, R., Shrestha, S.: Novel Asynchronous Registers for Sequential Circuits with Quantum-Dot Cellular Automata. In: 2012 IEEE International Symposium on Circuits and Systems, IEEE (2012)Google Scholar
  25. 25.
    Tahoori, M.B., et al.: Defects and faults in quantum cellular automata at nano scale. In: 2004 Proceedings of 22nd on VLSI Test Symposium, IEEE (2004)Google Scholar
  26. 26.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Kianpour, M., Sabbaghi-Nadooshan, R.: Optimized Design of Multiplexor by Quantum-dot CellularAutomata. Int. J. Nanosci. Nanotechnol. 9(1), 15–24 (2013)Google Scholar
  28. 28.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  29. 29.
    Cho, H., Swartzlander, E. E. Jr: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)CrossRefzbMATHGoogle Scholar
  31. 31.
    Sen, B. et al.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)CrossRefGoogle Scholar
  32. 32.
    Walus, K. et al.: QCADEsigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations