Statistical Aspects of Coherent States of the Higgs Algebra



We construct and study various aspects of coherent states of a polynomial angular momentum algebra. The coherent states are constructed using a new unitary representation of the nonlinear algebra. The new representation involves a parameter γ that shifts the eigenvalues of the diagonal operator J0.


Higgs algebra Coherent states Statistical properties 



M.N.K. thanks CSIR-UGC, India for financial support through their SRF scheme. TS thanks SERB, India for financial support via Grant: ECR/2015/000081. We thank Prof. Bindu A. Bambah for her helpful discussions and insightful comments. We thank the referee for a careful reading of the manuscript and asking questions that have improved not only the manuscript but also our understanding of the results presented here.


  1. 1.
    Higgs, P.W.: Dynamical symmetries in a spherical geometry. I. J. Phys. A 12, 309 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Leemon, H.I.: Dynamical symmetries in a spherical geometry. II. J. Phys. A 12, 489 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Zhedanov, A.S.: The Higgs algebra as a quantum deformation of S U(2). Mod. Phys. Lett. A 7, 507 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Curtright, T.L., Zachos, C.K.: Deforming maps for quantum algebras. Phys. Lett. B 243, 237 (1990)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Daskaloyannis, C.: Generalized deformed oscillator and nonlinear algebras. J. Phys. A 26, L871 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bonatsos, D., Daskaloyannis, C.: Kolokotronis, generalized deformed S U(2) algebra. J. Phys. A 24, L789 (1991)CrossRefMATHGoogle Scholar
  7. 7.
    Abdesselam, B.B., Beckers, J., Chakrabarti, A., Debergh, N.: On nonlinear angular momentum theories, their representations and associated Hopf structures. J. Phys. A 29, 3075 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Debergh, N.: Addendum to ‘On nonlinear angular momentum theories, their representations and associated Hopf structures’. J. Phys. A 30, 5239 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Delbecq, C., Quesne, C.: Nonlinear deformations of s u(2) and s u(1, 1) generalizing Witten’s algebra. J. Phys. A 26, L127 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Roc̈ek, M.: Representation theory of the nonlinear S U(2) algebra. Phys. Lett. B 255, 554 (1991)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Sunilkumar, V.: Aspects of polynomial algebras and their physical applications, Thesis in University of Hyderabad. arXiv:math-ph/0203047
  12. 12.
    Govindarajan, T.R., Pramod, P., Shreecharan, T.: Beyond fuzzy spheres. J. Phys. A 43, 205203 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hoque, F., Marquette, I., Zhang, Y.Z.: Quadratic algebra structure and spectrum of a new superintegrable system in N-dimension. J. Phys. A 48, 185201 (2015). and references thereinADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kaluder, J.R., Penson, K.A., Sixdeniers, J.M.: Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems. Phys. Rev. A. 64, 013817 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Sadiq, M., Inomata, A.: Coherent states for polynomial s u(2) algebra. J. Phys. A 40, 11105 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (1986)CrossRefMATHGoogle Scholar
  17. 17.
    Gilmore, R.: Gometry of symmetrised states. Ann. Phys. 74, 391 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and applications. Rev. Mod. Phys. 62, 867 (1990)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sunil Kumar, V., Bambah, B.A., Jagannathan, R.: Jordan–schwinger-type realizations of three-dimensional polynomial algebras. Mod. Phys. Lett. A 17, 1559 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sunilkumar, V., Bambah, B.A., Jagannathan, R., Panigrahi, P.K., Srinivasan, V.: Coherent states of nonlinear algebras: applications to quantum optics. J. Opt. B 2, 126 (2000)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Field, T.R., Hughston, L.P.: The geometry of coherent states. J. Math. Phys. 40, 2568 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and TechnologyThe ICFAI Foundation for Higher EducationHyderabadIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations