International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1559–1571 | Cite as

Multiparty Quantum Direct Secret Sharing of Classical Information with Bell States and Bell Measurements

Article
  • 61 Downloads

Abstract

This paper proposed a new and efficient multiparty quantum direct secret sharing (QDSS) by using swapping quantum entanglement of Bell states. In the proposed scheme, the quantum correlation between the possible measurement results of the members (except dealer) and the original local unitary operation encoded by the dealer was presented. All agents only need to perform Bell measurements to share dealer’s secret by recovering dealer’s operation without performing any unitary operation. Our scheme has several advantages. The dealer is not required to retain any photons, and can further share a predetermined key instead of a random key to the agents. It has high capacity as two bits of secret messages can be transmitted by an EPR pair and the intrinsic efficiency approaches 100%, because no classical bit needs to be transmitted except those for detection. Without inserting any checking sets for detecting the eavesdropping, the scheme can resist not only the existing attacks, but also the cheating attack from the dishonest agent.

Keywords

Quantum secret sharing Bell measurements Entanglement swapping Security 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61602291, 11671244, 11601300, 11601302,).

References

  1. 1.
    Shamir, A.: How to share a secret. Commun. ACM 11, 612?-613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS National Computer Conference, pp. 313–317, New York (1979)Google Scholar
  3. 3.
    Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1840 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Lu, H. et al.: Secret Sharing of a Quantum State. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)CrossRefMATHGoogle Scholar
  8. 8.
    Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum Inf. Process. 16, 202 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Bai, C.M., Li, Z.H., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 113–114 (2003)Google Scholar
  12. 12.
    Abulkasim, H. et al.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Inf. 15, 1750023 (2017)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yu, K.F. et al.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16, 194 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zhang, Z.J., Man, X.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A. 72, 656–665 (2005)MathSciNetGoogle Scholar
  15. 15.
    Wu, S.Y.: A quantum entanglement swapping secret sharing agreement model. Indones. J. Electr. Eng. Comput. Sci. 4, 406–411 (2016)CrossRefGoogle Scholar
  16. 16.
    Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)CrossRefGoogle Scholar
  17. 17.
    Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Shi, R.H. et al.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283, 2476–2480 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, W., Wang, Y.B., Fan, W.Q.: An novel protocol for the quantum secure multi-party summation based on two-particle bell states. Int. J. Theor. Phys. 1, 1–9 (2017)MathSciNetMATHGoogle Scholar
  20. 20.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284, 1711–1713 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, S.H., Chong, S.K., Hwang, T.: On multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283, 4405–4407 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, W.H. et al.: An Improved Multiparty Quantum Secret Sharing with Bell States and Bell;Measurement. Int. J. Theor. Phys. 52, 2099–2111 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284, 1468–1471 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of Ethnic EducationShaanxi Normal UniversityXi’anChina

Personalised recommendations