Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1071–1078 | Cite as

Analytical Evaluation of Two-Center Integrals for Slater-Orbitals Type in Hartree-Fock Formalism on Noncommutative Space

  • Salah KhenchoulEmail author
  • Brahim Lagoun
  • Abdelnasser Guibadj
  • Abderrahmane Cheriet
  • Razik Belhaoues
Article

Abstract

In this paper we have examined the influence of noncommutativity geometry on the two-center integrals for Slater-orbitals type in Hartree-Fock Formalism. Within the perturbation theory, we have evaluated analytically the correction due to noncommutativity in nuclear attraction integrals and electronic interaction integrals over Slater-Orbitals type (STO). It is shown that there is no correction due to the noncommutativity in both nuclear integrals for ns-state and interaction integrals between electrons of this quantum state.

Keywords

Hartree-Fock formalism Noncommutative geometry Slater-orbitals Nuclear attraction 

Notes

References

  1. 1.
    Snyder, H.S.: Phys. Rev. 71, 38 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    Seiberg, N., Witten, E.: J. High En. Phys. 09, 032 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: Phys. Lett. B. 331, 39 (1994)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Eur. Phys. J. C. 36, 251 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Ben Geloun, J., Gangopadhyay, S., Scholtz, F.G.: Europhys. Lett. 86, 51001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Nath, D., Roy, P.: Ann. Phys. 377, 115 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Djemai, A.E.F., Smail, H.: Commun. Theor. Phys. 41, 837 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Daszkiewicz, M.: Acta Phys. Pol. B. 44, 699 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Gnatenko, K.P., Tkachuk, V.M.: Phys. Lett. A. 381, 2463 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ho, P.-M., Chu, S.-C.: Nucl. Phys. B. 550, 151 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Slater, J.C.: Phys. Rev. 36, 57 (1930)ADSCrossRefGoogle Scholar
  13. 13.
    Morse, P.M., Feshbach, H.: Method of Theoretical Physics. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  14. 14.
    Allouche, A.: Theor. Chim. Acta (Berl). 34, 79–83 (1974)CrossRefGoogle Scholar
  15. 15.
    Wigner, E.P.: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg Verlag, Braunschweig (1931)CrossRefzbMATHGoogle Scholar
  16. 16.
    Julg, A.: Chemie Quantique. Dunod, Paris (1967)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Materials Physico-ChemistryUniversity of Amar TelidjiLaghouatAlgeria
  2. 2.Laboratory of Materials PhysicUniversity of Amar TelidjiLaghouatAlgeria
  3. 3.Laboratory of Materials Semiconductors and Dielectrics Studies and DevelopmentUniversity of Amar TelidjiLaghouatAlgeria
  4. 4.Laboratory of Pure and Applied MathematicsUniversity of Amar TelidjiLaghouatAlgeria

Personalised recommendations