Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1047–1059 | Cite as

Cryptanalysis and Improvement of Some Quantum Proxy Blind Signature Schemes

  • Long Zhang
  • Shuang Li
  • Ke-Jia ZhangEmail author
  • Hong-Wei Sun
Article

Abstract

Recently, two novel quantum proxy blind signature schemes are proposed by Zeng et al. and Yang et al., respectively. Their schemes have made a great contribution to the development of quantum proxy blind signature (QPBS). However, we find that there exist some security loopholes which have been neglected by them, i.e., the receiver can forge the signature in Zeng et al.’s scheme and the unreasonable assumption about arbitrator exists in Yang et al.’s scheme, etc. In order to overcome these problems, some improved ideas are proposed. Moreover, we give the further discussions of QPBS in this paper. Finally, we summarize some reasonable assumptions in order to satisfy the security properties of QPBS.

Keywords

Quantum signatures Proxy blind signature Security loopholes Improvements 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant No.61802118, Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) under Grant No.SKLNST-2018-1-07, Youth Foundation of Heilongjiang University under Grant No.QL201501, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province under Grant No.UNPYSCT-2018015 and Hei Long Jiang Postdoctoral Foundation under Grant No.LBH-Z17048.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179, Bangalore, India (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on bell¡s theorem. Phys. Rev. Lett 67, 661–663 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the singleparticle quantum state to encode the information. Quantum Inf. Proc. 12(1), 365–380 (2013)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun 282, 3382–3385 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with single photons. Chin. Phys. B 18, 3189–3192 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  12. 12.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Wei, C.Y., Cai, X.Q., Liu, B.: A generic construction of Quantum-Oblivious-Key-Transfer-Based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited, vol. 89 (2014)Google Scholar
  20. 20.
    Sun, H.W., Zhang, L., Zhang, K.J., Wang, Q.L., Cai, X.Q.: The Security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56, 2433–2444 (2017)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cai, X.Q., Niu, H.F.: Partially blind signature based on quantum cryptography. Int. J. Mod. Phys. B 26, 1250163 (2012)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Su, Q., Huang, Z., Wen, Q.Y., et al.: Quantum blind signature based on two-state vector forMalism. Opt. Commun. 283, 4408–4410 (2010)CrossRefGoogle Scholar
  23. 23.
    Cao, H.J., Huang, J., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53, 3095–3100 (2014)CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhou, J.X., Zhou, Y.J., Niu, X.X., Yang, Y.X.: Quantum proxy signature with public verifiability. Sci. China Phys. Mech. Astron. 54, 1828–1832 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Wen, X.J., Liu, Y.: A realizable quantum sequential multi-signature scheme. Acta Electron. Sin. 35, 1079–1083 (2007)Google Scholar
  26. 26.
    Wen, X.J., Liu, Y., Zhou, N.R.: Realizable quantum broadcasting multi-signature scheme. Int. J. Mod. Phys. B 22, 4251–4259 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wen, X., Tian, Y., Ji, L., Niu, X.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Xu, R., Huang, L., Yang, W., He, L.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, K.J., Song, T.T., Zuo, H.J., Zhang, W.W.: A secure quantum group signature scheme based on Bell states, vol. 87 (2013)Google Scholar
  30. 30.
    Zhang, K.J., Sun, Y., Song, T.T., Zuo, H.J.: Cryptanalysis of the quantum group signature protocols. Int. J. Theor. Phys. 52(11), 4163–4173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Chaum, D.: Blind Signature for Untraceable Payments. In: Proceeding of CRTPTO<82, pp. 199–203. Plenum Publishing (1982)Google Scholar
  32. 32.
    Wang, M.M., Chen, X.B., Yang, Y.X.: A blind quantum signature protocol using the GHZ states. Sci. China Phys. Mech. 56, 1636–1641 (2013)CrossRefGoogle Scholar
  33. 33.
    Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Fan, L., Zhang, K.J., Qin, S.J., Guo, F.Z.: A novel quantum blind signature scheme with four-particle GHZ states. Int J Theor Phys 55, 1028–1035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57, New Delhi (1966)Google Scholar
  36. 36.
    Cao, H.J., Yu, Y.F., Song, Q., Gao, L.X.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54, 1325–1333 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54, 2605–2612 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lin, W.D., Jan, J.K.: A security personal learning tools using a proxy blind signature scheme. In: Proceedings of International Conference on Chinese Language Computing, pp. 273–277. IEEE Press Illinois, USA (2000)Google Scholar
  39. 39.
    Tan, Z.W.: An off-line electrnic cash system based on proxy blind signature. Comput. J. 54(4), 505–512 (2011)CrossRefGoogle Scholar
  40. 40.
    Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quant. Inf. Process. 12(1), 549–558 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Cao, H.J., Zhu, Y.Y., Li, P.F.: A quantum proxy weak blind signature scheme. Int. J. Theor. Phys.  https://doi.org/10.1007/s10773-013-1826-6
  42. 42.
    Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54, 582–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys.  https://doi.org/10.1007/s10773-017-3322-x (2017)
  44. 44.
    Yang, Y.Y., Xie, S.C., Zhang, J.Z.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys.  https://doi.org/10.1007/s10773-017-3379-6 (2017)
  45. 45.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on <Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Chen, X.B., Yang, S., Xu, G., Su, Y., Yang, Y.X.: Cryptanalysis of the quantum state sharing protocol using four sets of W-class states. Int. J. Quantum Inform. 11(1), 1350010 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on Quantum key distribution without alternative measurements. Phys. Rev. A 63(3), 036301 (2001)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quant. Inf. Comput. 7(4), 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189–3193 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    Cai, Q.: The ping”CPong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Gao, F., Guo, F., Wen, Q., Hu, F.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger- Horne-Zeilinger state. Opt. Commun 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantumkey-Distribution systems. Phys. Rev. A 73(2), 022320 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  58. 58.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Long Zhang
    • 1
    • 2
  • Shuang Li
    • 1
  • Ke-Jia Zhang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Hong-Wei Sun
    • 3
  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex SystemsHarbinChina
  3. 3.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations