Advertisement

Arbitrary Quantum Signature Based on Local Indistinguishability of Orthogonal Product States

  • Dong-Huan Jiang
  • Yan-Long Xu
  • Guang-Bao Xu
Article

Abstract

Digital signature plays an important role in cryptography. Many quantum digital signature (QDS) schemes have been proposed up to now since the security of classic digital signature (CDS) schemes becomes more and more vulnerable with the development of quantum computing algorithms. Most of the existing quantum signature schemes are based on probabilistic comparison of quantum states, which makes the schemes very complicated. In this paper, we propose a new QDS scheme based on local indistinguishability of orthogonal product states. In the scheme, the receiver cooperates with the arbitrator to verify the valid of the signature. The analysis of security and efficiency shows that our scheme is secure and efficient.

Keywords

Digital signature Quantum digtial signature Local indistinguishability 

Notes

Acknowledgements

This work is supported by NSFC (Grant No. 61601171).

References

  1. 1.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: Delegation of the power to sign messages. IEICE Trans. Fundam. E79(A(9)), 1338–1353 (1996)Google Scholar
  2. 2.
    Cao, F., Cao, Z.F.: A secure identity-based proxy multi-signature scheme. Inf. Sci. 179(3), 292–302 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSGoogle Scholar
  4. 4.
    Curty, M., Lutkenhaus, N.: Comment on arbitrated quantum-signature scheme. Phys. Rev. A 77(4), 046301 (2008)ADSMathSciNetGoogle Scholar
  5. 5.
    Cao, Z.J., Markowitch, O.: A note on an arbitrated quantum signature scheme. Int. J. Quantum Inf. 7(6), 1205–1209 (2009)zbMATHGoogle Scholar
  6. 6.
    Zeng, G.H.: Reply to Comment on Arbitrated quantum-signature scheme. Phys. Rev. A 78(1), 016301 (2008)ADSMathSciNetGoogle Scholar
  7. 7.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)ADSMathSciNetGoogle Scholar
  8. 8.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)ADSGoogle Scholar
  9. 9.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)ADSGoogle Scholar
  10. 10.
    Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81(5), 055001 (2010)ADSzbMATHGoogle Scholar
  11. 11.
    Xu, R., Huang, L.S., Yang, W., He, L.B.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)ADSGoogle Scholar
  12. 12.
    Yang, Y.G., Wen, Q.Y.: Quantum threshold group signature. Sci. Chin. Ser. G Phys. Astron. 51(10), 1505–1514 (2008)Google Scholar
  13. 13.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17(2), 415–418 (2008)ADSGoogle Scholar
  14. 14.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetGoogle Scholar
  15. 15.
    Shi, J.J., Shi, R.H., Guo, Y., Peng, X.Q., Tang, Y.: Batch proxy quantum blind signature scheme. Sci. Chin. Inf. Sci. 56(5), 052115 (2013)MathSciNetGoogle Scholar
  16. 16.
    Wen, X.J., Niu, X.M., Ji, L.P., Tian, Y.: Aweak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSGoogle Scholar
  17. 17.
    Wang, T.Y., Wen, Q.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)ADSGoogle Scholar
  18. 18.
    Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lou, X.P., Chen, Z.G., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSGoogle Scholar
  21. 21.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)ADSGoogle Scholar
  22. 22.
    Yang, Y.G., Lei, H., Liu, Z.C., et al.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Yu, S.X., Oh, C.H.: Detecting the local indistinguishability of maximally entangled states. arXiv:1502.01274v1 [quant-ph] (2015)
  24. 24.
    Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)ADSGoogle Scholar
  25. 25.
    Zhang, Z.C., Gao, F., Cao, Y., Qin, S.J., Wen, Q.Y.: Local indistinguishability of orthogonal product states. Phys. Rev. A 93, 012314 (2016)ADSMathSciNetGoogle Scholar
  26. 26.
    Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93(3), 032341 (2016)ADSGoogle Scholar
  27. 27.
    Xu, G.B., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Locally indistinguishable orthogonal product bases in arbitrary bipartite quantum system. Sci. Rep. 6, 31048 (2016)ADSGoogle Scholar
  28. 28.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J., Zuo, H.J.: Local indistinguishability of multipartite orthogonal product bases. Quantum Inf. Process. 16, 276 (2017)ADSzbMATHGoogle Scholar
  29. 29.
    Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phy. Rev. Lett. 89, 147901 (2002)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSGoogle Scholar
  31. 31.
    Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quant. Inf. Comput. 13, 861–879 (2013)Google Scholar
  32. 32.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pairblock. Phys. Rev. A 68, 042317 (2003)ADSGoogle Scholar
  33. 33.
    Chen, X.B., et al.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17, 225 (2018)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSGoogle Scholar
  35. 35.
    Guo, G.P., Li, C.F., Shi, B.S., Li, J., Guo, G.C.: Quantum key distribution scheme with orthogonal product states. Phys. Rev. A 64, 042301 (2001)ADSGoogle Scholar
  36. 36.
    Cai, Q.Y., Tan, Y.G.: Photon-number-resolving decoy-state quantum key distribution. Phys. Rev. A 73, 032305 (2006)ADSGoogle Scholar
  37. 37.
    Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSGoogle Scholar
  40. 40.
    Fatahi, N., Naseri, M., Gong, L.H., Liao, Q.H.: High-efficient arbitrated quantum signature scheme based on cluster states. Int. J. Theor. Phys. 56, 609–616 (2017)zbMATHGoogle Scholar
  41. 41.
    Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: In Herbert bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcat. Chaos. 26, 11 (2016)zbMATHGoogle Scholar
  44. 44.
    Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)MathSciNetGoogle Scholar
  45. 45.
    Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
  46. 46.
    Meng, X.Z., Zhao, S.N., Zhang, W.Y.: Adaptive dynamics analysis of a predator-prey model with selective disturbance. Appl. Math. Comput. 266, 946–958 (2015)MathSciNetGoogle Scholar
  47. 47.
    Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)MathSciNetGoogle Scholar
  48. 48.
    Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Jiang, T.S., Jiang, Z.W., Ling, S.T.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina

Personalised recommendations