Skip to main content
Log in

Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  2. Fisher, R.A.: Proc. Camb. Philol. Soc. 22, 700 (1929)

    Article  ADS  Google Scholar 

  3. Huelga, S.F., et al.: Phys. Rev. Lett. 79, 3865 (1997)

    Article  ADS  Google Scholar 

  4. Chin, A.W., Huelga, S.F., Plenio, M.B.: Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  5. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  6. Sun, Z., Ma, J., Lu, X.M., Wang, X.: Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  7. Krischek, R., et al.: Phys. Rev. Lett. 107, 080504 (2011)

    Article  ADS  Google Scholar 

  8. Strobel, H., et al.: Science 345, 424 (2014)

    Article  ADS  Google Scholar 

  9. Berrada, K. : Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  10. Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  11. Ostermann, L., Ritsch, H., Genes, C.: Phys. Rev. Lett. 111, 123601 (2013)

    Article  ADS  Google Scholar 

  12. Dur, W., Skotiniotis, M., Frowis, F., Kraus, B.: Phys. Rev. Lett. 112, 080801 (2014)

    Article  ADS  Google Scholar 

  13. Chaves, R., Brask, J.B., Markiewicz, M., Koíodynski, J., Acín, A.: Phys. Rev. Lett. 111, 120401 (2013)

    Article  ADS  Google Scholar 

  14. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  15. Li, Y.L., Xiao, X., Yao, Y.: Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  16. Huang, J., Guo, Y.N., Xie, Q.: Chin. Phys. B 25, 020303 (2016)

    Article  Google Scholar 

  17. Katz, N., et al.: Science 312, 1498 (2006)

    Article  ADS  Google Scholar 

  18. Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Nat. Phys. 10, 189 (2014)

    Article  Google Scholar 

  19. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  20. Man, Z.X., Xia, Y.J., An, N.B.: Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  21. Liao, X.P., Ding, X.Z., Fang, M.F.: Quantum Inf. Process. 14, 4395 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Katz, N., et al.: Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  23. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  24. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  25. Wang, X.W., Yu, S.X., Zhang, D.Y., Oh, C.H.: Sci. Rep. 6, 22408 (2016)

    Article  ADS  Google Scholar 

  26. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  27. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  28. Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., OConnell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  29. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  30. Bruschi, D.E., Datta, A., Ursin, R., Ralph, T.C., Fuentes, I.: Phys. Rev. D 90, 124001 (2014)

    Article  ADS  Google Scholar 

  31. Ahmadi, M., Bruschi, D.E., Fuentes, I.: Phys. Rev. D 89, 065028 (2014)

    Article  ADS  Google Scholar 

  32. Wang, J., Tian, Z., Jing, J., Fan, H.: Phys. Rev. D 93, 065008 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lock, M.P.E., Fuentes, I.: Relativistic quantum clocks. arXiv:1609.09426 (2016)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11374096 and 11604094), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ping Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XP., Zhou, X. & Fang, MF. Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement. Int J Theor Phys 57, 909–916 (2018). https://doi.org/10.1007/s10773-017-3623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3623-0

Keywords

Navigation