Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of Size Distribution of Cell Model on the Effective Thermal Conductivity of Saturated Porous Media

Abstract

Effective thermal conductivity of a porous medium is a key thermos-physical parameter in characterizing heat transfer properties in many applications. In this study, a new cell model to predict the porous medium effective thermal conductivity is developed by treating the cells as being variables in size in relation to porosity. In the new model, the interaction of a particle with the surrounding is conceptualized as a fluid cell surrounding the particle and the particle size distribution is explicitly taken into account by the variations of cell size in the porous medium. While the fluid volume fraction varies in different cells, the total fluid volume fraction in the porous medium is required to be the same as the porosity. The developed effective thermal conductivity model is then compared with experimental data sets from the literature. The effect of cell size variations on the effective thermal conductivity of porous medium is quantified and discussed. The results demonstrate that the model that incorporates cell size variations can capture scattered experimental data in the literature. The cell size variations significantly affect the effective thermal conductivity of porous medium and the non-uniformity of cell size enhances the effective thermal conductivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    N. Wakao, S. Kaguei, Heat And Mass Transfer in Packed Beds (Gordon and Breach Science Publishers, New York, 1982)

  2. 2.

    H.T. Aichlmayr, F.A. Kulacki, The effective thermal conductivity of saturated porous media. Adv. Heat Transf. 39, 377–460 (2006). https://doi.org/10.1016/S0065-2717(06)39004-1

  3. 3.

    X. Bai, A. Nakayama, Quick estimate of effective thermal conductivity for fluid-saturated metal frame and prismatic cellular structures. Appl. Therm. Eng. 160, 114011 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114011

  4. 4.

    X. Qin, Y. Zhou, A.P. Sasmito, An effective thermal conductivity model for fractal porous media with rough surfaces. Adv. Geo Energy Res. 3, 149–155 (2019). https://doi.org/10.26804/ager.2019.02.04

  5. 5.

    H. Wu, N. Gui, X. Yang, J. Tu, S. Jiang, Modeling effective thermal conductivity of thermal radiation for nuclear packed pebble beds. J. Heat Transf. 140, 042701 (2018). https://doi.org/10.1115/1.4038231

  6. 6.

    L. Pan, J. Wang, L. Lu, X. Qiu, Modeling the effective thermal conductivity for disperse systems with high solid mass fractions. Int. J. Heat Mass Transf. 97, 719–724 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.062

  7. 7.

    W. van Antwerpen, P.G. Rousseau, C.G. du Toit, Multi-sphere unit cell model to calculate the effective thermal conductivity in packed pebble beds of mono-sized spheres. Nucl. Eng. Des. 247, 183–201 (2012). https://doi.org/10.1016/j.nucengdes.2012.03.012

  8. 8.

    J. Kou, F. Wu, H. Lu, Y. Xu, F. Song, The effective thermal conductivity of porous media based on statistical self-similarity. Phys. Lett. A 374, 62–65 (2009). https://doi.org/10.1016/j.physleta.2009.10.015

  9. 9.

    J. Wang, J.K. Carson, M.F. North, D.J. Cleland, A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int. J. Heat Mass Transf. 51, 2389–2397 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.028

  10. 10.

    K.S. Reddy, P. Karthikyan, Estimation of effective thermal conductivity of two-phase materials using collocated parameter model. Heat Transf. Eng. 30, 998–1011 (2009). https://doi.org/10.1080/01457630902837533

  11. 11.

    M. Wang, J. Wang, N. Pan, S. Chen, Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007). https://doi.org/10.1103/PhysRevE.75.036702

  12. 12.

    G. Buonanno, A. Carotenuto, The effective thermal conductivity of a porous medium with interconnected particles. Int. J. Heat Mass Transf. 40, 393–405 (1997). https://doi.org/10.1016/0017-9310(96)00111-1

  13. 13.

    P. Ranut, On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl. Therm. Eng. 101, 496–524 (2016). https://doi.org/10.1016/j.applthermaleng.2015.09.094

  14. 14.

    W. van Antwerpen, C.G. du Toit, P.G. Rousseau, A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des. 240, 1803–1818 (2010). https://doi.org/10.1016/j.nucengdes.2010.03.009

  15. 15.

    J. Zhu, A cell model of effective thermal conductivity for saturated porous media. Int. J. Heat Mass Transf. 138, 1054–1060 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.134

  16. 16.

    J. Happel, Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J. 4, 197–201 (1958). https://doi.org/10.1002/aic.690040214

  17. 17.

    S. Kuwabara, The forces experienced by randomly distributed parallel cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527–532 (1959). https://doi.org/10.1143/JPSJ.14.527

  18. 18.

    D. Barua, A model-based analysis of tissue targeting efficacy of nanoparticles. J. R. Soc. Interface 15, 20170787 (2018). https://doi.org/10.1098/rsif.2017.0787

  19. 19.

    E. You, X. Sun, F. Chen, L. Shi, Z. Zhang, An improved prediction model for the effective thermal conductivity of compact pebble bed reactors. Nucl. Eng. Des. 323, 95–102 (2017). https://doi.org/10.1016/j.nucengdes.2017.07.041

  20. 20.

    G. Sun, J.R. Grace, The effect of particle size distribution on the performance of a catalytic fluidized bed reactor. Chem. Eng. Sci. 45, 2187–2194 (1990). https://doi.org/10.1016/0009-2509(90)80094-U

  21. 21.

    J.R. Grace, G. Sun, Influence of particle size distribution on the performance of fluidized bed reactors. Can. J. Chem. Eng. 69, 1126–1134 (1991). https://doi.org/10.1002/cjce.5450690512

  22. 22.

    A. Karau, C. Benken, J. Thömmes, M.-R. Kula, The influence of particle size distribution and operating conditions on the adsorption performance in fluidized beds. Biotechnol. Bioeng. 55, 54–64 (1997). https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1%3c54:AID-BIT7%3e3.0.CO;2-W

  23. 23.

    C.-L. Lin, M.-Y. Wey, S.-D. You, The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technol. 126, 297–301 (2002). https://doi.org/10.1016/S0032-5910(02)00074-8

  24. 24.

    J. Zhu, B.P. Mohanty, N.N. Das, On the effective averaging schemes of hydraulic properties at the landscape scale. Vadose Zone J. 5, 308–316 (2006). https://doi.org/10.2136/vzj2005.0035

  25. 25.

    W.H. Somerton, Thermal properties and temperature-related behavior of rock/fluid systems (Elsevier Science, New York, 1992), p. 256

  26. 26.

    F. Brigaud, G. Vasseur, Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J 98, 525–542 (1989). https://doi.org/10.1111/j.1365-246X.1989.tb02287.x

  27. 27.

    M. Zamora, D. Vo-Thanh, G. Bienfait, J.P. Poirier, An empirical relationship between thermal conductivity and elastic wave velocities in sandstone. Geophys. Res. Lett. 20, 1679–1682 (1993). https://doi.org/10.1029/92GL02460

  28. 28.

    A. Sugawara, A. Hamada, Thermal conductivity of dispersed systems, 10th thermal conductivity conference, Massachusetts, US, vol. 3, 712 (1970)

  29. 29.

    S.C. Cheng, R.I. Vachon, The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int. J. Heat Mass Transf. 12, 249–264 (1969). https://doi.org/10.1016/0017-9310(69)90009-X

  30. 30.

    F.A. Johnson, The thermal conductivity of aqueous Thoria suspensions (Atomic Energy Research Establishment, Harwell, 1958), pp. 2578–2584

  31. 31.

    A.L. Baxley, J.R. Couper, Part 4—thermal conductivity of two-phase systems: thermal conductivity of suspensions, Research report series no. 8, University of Arkansas Engineering Experimental Station (1966)

  32. 32.

    N.C. Nahas, J.R. Couper, Part 3—Thermal conductivity of two-phase systems: thermal conductivity of emulsions, Research report series no. 7, University of Arkansas Engineering Experimental Station (1966)

  33. 33.

    E.H. Ratcliffe, Thermal conductivity of silicon rubber and some other clastomas. Trans. Inst. Rubber Ind. 38, 181–195 (1962)

  34. 34.

    A. Sugawara, Y. Yoshizawa, An investigation on the thermal conductivity of porous materials and its application in porous rocks. Aust. J. Phys. 14, 469–480 (1961). https://doi.org/10.1071/PH610469

  35. 35.

    J.G. Knudsen, R.H. Ward, Thermal conductivity of liquid-liquid emulsions. Ind. Eng. Chem. 50, 1667–1675 (1958)

  36. 36.

    E.H. Ratcliffe, Thermal conduction on porous media: Methodology, results, estimations, Proceedings of 18th Thermal Conductivity Conference, La Fayette, In, 7–8 October 1968, Plenum Press, New York, 1141–1147 (1969)

  37. 37.

    R.L. Goring, S.W. Churchill, Thermal conductivity of heterogeneous materials. Chem. Eng. Prog. 57, 53–59 (1961)

  38. 38.

    T.E.W. Shumann, V. Voss, Heat flow through granulated material. Fuel Sci. Pract. 13, 249–256 (1931)

  39. 39.

    H.W. Godbee, T.W. Zeigler, Thermal conductivities of MgO, Al2O3 and ZrO2 powders to 850 °C—II. Theor. J. Appl. Phys. 37, 56–65 (1966). https://doi.org/10.1063/1.1707891

  40. 40.

    J.A. Fountain, E.A. West, Thermal conductivity of particulate Basalt as a function of density in simulated Lunar and Martian environments. J. Geophys. Res. 75, 4063–4069 (1970). https://doi.org/10.1029/JB075i020p04063

  41. 41.

    H. Verschoor, G.C.A. Schuit, Heat transfer to fluid flowing through beds of granular solid. Appl. Sci. Res. 42, 97–119 (1950)

  42. 42.

    I.H. Tavman, Effective thermal conductivity of granular porous materials. Int. Commun. Heat Mass Transf. 23, 169–176 (1996). https://doi.org/10.1016/0735-1933(96)00003-6

  43. 43.

    J.H. Messmer, Thermal conductivity of porous media—packing of particles, 4th thermal conductivity proceedings, Part C, San Francisco, CA, 111–115 (1964)

  44. 44.

    A.G. Shashkov, L.L. Vasiliev, A. Tanaeva, L.S. Domorod, Thermo-physical properties of thermally insulating materials in the cryogenic temperature region. Int. J. Heat Mass Transf. 15, 2385–2390 (1972). https://doi.org/10.1016/0017-9310(72)90134-2

Download references

Author information

Correspondence to Jianting Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, J. Impact of Size Distribution of Cell Model on the Effective Thermal Conductivity of Saturated Porous Media. Int J Thermophys 41, 34 (2020). https://doi.org/10.1007/s10765-020-2611-4

Download citation

Keywords

  • Cell model
  • Cell size variation
  • Effective thermal conductivity
  • Porous medium
  • Thermal conductivity ratio