Advertisement

Depth-Resolved Analysis of Double-Layered Cultural Heritage Artifacts by Pulsed Thermography

  • 30 Accesses

Abstract

In this work, an experimental method based on the use of pulsed thermography is proposed for the depth-resolved characterization of double-layered structures of cultural heritage items. A quantitative evaluation of the inspected features was achieved by comparing thermographic data with theoretical predictions provided by specifically developed theoretical models for the analysis of the thermographic signal. In this respect, thermographic models for both optically opaque and semi-transparent materials were employed to analyze the results obtained in copper alloys and paper-based original artworks, respectively. Thermographic inspections aimed at establishing the procedure adopted for the application of insertions in ancient bronze statues are presented. Finally, the evaluation of the depth position of graphical features buried beneath leaves of historical books is proposed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    D. Gavrilov, R.G. Maev, D.P. Almond, Can. J. Phys. 92, 341 (2014). https://doi.org/10.1139/cjp-2013-0128

  2. 2.

    S. Paoloni, F. Mercuri, U. Zammit, J. Chem. Phys. 145, 124506 (2016). https://doi.org/10.1063/1.4963342

  3. 3.

    F. Mercuri, S. Paoloni, M. Marinelli, R. Pizzoferrato, U. Zammit, J. Chem. Phys. 138, 074903 (2013)

  4. 4.

    M.C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, K. Panajotov, Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures. J. Appl. Phys. 92, 2251–2255 (2002). https://doi.org/10.1063/1.1499981

  5. 5.

    O.B. Wright, R. Li Voti, O. Matsuda, M.C. Larciprete, C. Sibilia, M. Bertolotti, J. Appl. Phys. 91, 5002–5009 (2002). https://doi.org/10.1063/1.1462414

  6. 6.

    F. Mercuri, N. Orazi, S. Paoloni, C. Cicero, U. Zammit, Appl. Sci. 7, 1010 (2017). https://doi.org/10.3390/app7101010

  7. 7.

    K. Blessey, C. Young, J. Nunn, J. Coddington, S. Shepard, Stud. Conserv. 55, 107 (2010). https://doi.org/10.1179/sic.2010.55.2.107

  8. 8.

    J.C. Candoré, J.L. Bodnar, V. Detalle, P. Grossel, Eur. Phys. J. Appl. Phys. 57, 21002 (2012). https://doi.org/10.1051/epjap/2011110266

  9. 9.

    D. Ambrosini, C. Daffara, R. Di Biase, D. Paoletti, L. Pezzati, R. Bellucci, F. Bettini, J. Cult. Herit. 11, 196 (2010). https://doi.org/10.1016/j.culher.2009.05.001

  10. 10.

    H. Zhang, S. Sfarra, K. Saluja, J. Peeters, J. Fleuret, Y. Duan, H. Fernandes, N. Avdelidis, C. Ibarra-Castanedo, X. Maldague, J. Nondestruct. Eval. 36, 34 (2017). https://doi.org/10.1007/s10921-017-0414-8

  11. 11.

    S. Sfarra, C. Ibarra-Castanedo, D. Ambrosini, D. Paoletti, A. Bendada, X. Maldague, Russ. J. Nondestr. Test. 47, 284 (2011). https://doi.org/10.1134/S1061830911040097

  12. 12.

    G.M. Carlomagno, C. Meola, NDT E Int. 35, 559 (2002)

  13. 13.

    J.L. Bodnar, J.C. Candoré, J.L. Nicolas, G. Szatanik, V. Detalle, J.M. Vallet, NDT & E Int. 49, 40 (2012). https://doi.org/10.1016/j.ndteint.2012.03.007

  14. 14.

    G. Doni, N. Orazi, F. Mercuri, C. Cicero, U. Zammit, S. Paoloni, M. Marinelli, J. Cult. Herit. 15, 692 (2014). https://doi.org/10.1016/j.culher.2013.12.001

  15. 15.

    F. Mercuri, P. Buonora, C. Cicero, P. Helas, F. Manzari, M. Marinelli, S. Paoloni, A. Pasqualucci, F. Pinzari, M. Romani, A. Terrei, O. Verdi, G.V. Rinati, U. Zammit, N. Orazi, J. Cult. Herit. 31, 53 (2018). https://doi.org/10.1016/j.culher.2017.10.008

  16. 16.

    F. Mercuri, N. Orazi, U. Zammit, A. Giuffredi, C.S. Salerno, C. Cicero, S. Paoloni, J. Archaeol. Sci.: Rep. 14, 199–207 (2017). https://doi.org/10.1016/j.jasrep.2017.05.051

  17. 17.

    F. Mercuri, S. Paoloni, N. Orazi, C. Cicero, U. Zammit, Appl. Phys. A 123, 327 (2017)

  18. 18.

    N. Orazi, S. Paoloni, U. Zammit, C. Cicero, M. Ferretti, G. Caruso, O. Colacicchi Alessandri, R. Paris, F. Mercuri, Int. J. Thermophys. 39, 141 (2018). https://doi.org/10.1007/s10765-018-2467-z

  19. 19.

    N. Orazi, F. Mercuri, U. Zammit, S. Paoloni, M. Marinelli, A. Giuffredi, C.S. Salerno, Stud. Conserv. 61, 236 (2016). https://doi.org/10.1179/2047058415Y.0000000025

  20. 20.

    M.C. Di Tuccio, N. Ludwig, M. Gargano, A. Bernardi, Herit. Sci. 3, 10 (2015). https://doi.org/10.1186/s40494-015-0041-6

  21. 21.

    F. Mercuri, R. Gnoli, S. Paoloni, N. Orazi, C. Cicero, U. Zammit, M. Marinelli, F. Scudieri, Restaurator 34, 195 (2013). https://doi.org/10.1515/res-2013-0011

  22. 22.

    S. Sfarra, M. Regi, M. Tortora, C. Casieri, S. Perilli, D. Paoletti, J. Ther. Anal. Calorim. 132, 1367 (2018). https://doi.org/10.1007/s10973-018-6997-1

  23. 23.

    M. Tortora, S. Sfarra, C. Casieri, Appl. Sci. 9, 3406 (2019). https://doi.org/10.3390/app9163406

  24. 24.

    M. Pucci, C. Cicero, N. Orazi, F. Mercuri, U. Zammit, S. Paoloni, Marinelli, Stud. Conserv. 60, 88 (2015)

  25. 25.

    N.P. Avdelidis, M. Koui, C. Ibarra-Castanedo, X. Maldague, Infrared Phys. Technol. 49, 254 (2007). https://doi.org/10.1016/j.infrared.2006.06.027

  26. 26.

    F. Mercuri, S. Paoloni, C. Cicero, U. Zammit, N. Orazi, Infrared Phys. Technol. 89, 223 (2018). https://doi.org/10.1016/j.infrared.2018.01.012

  27. 27.

    G. Caruso, S. Paoloni, N. Orazi, C. Cristina, U. Zammit, F. Mercuri, Measurement 143, 258 (2019). https://doi.org/10.1016/j.measurement.2019.04.086

  28. 28.

    F. Mercuri, G. Caruso, N. Orazi, U. Zammit, C. Cicero, O. Colacicchi Alessandri, M. Ferretti, S. Paoloni, Infrared Phys. Technol. 90, 31 (2018). https://doi.org/10.1016/j.infrared.2018.02.002

  29. 29.

    X. Maldague, Mat. Eval. 6, 1060 (2002). http://w3.gel.ulaval.ca/~maldagx/r_1221t.pdf

  30. 30.

    X. Maldague, Theory and practice of infrared technology for nondestructive testing (Wiley, New York, 2001)

  31. 31.

    O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The finite element method: its basis and fundamentals (Elsevier, Amsterdam, 2013)

  32. 32.

    A. Oron, The Athlit Ram: classical and hellenistic bronze casting technology. Ph.D. Thesis (Texas A&M University, College Station, 2001)

  33. 33.

    N. Orazi, J. Cult. Herit. (2019). https://doi.org/10.1016/j.culher.2019.08.005

  34. 34.

    De Boer, J.R.J. Van Asperen, Appl. Opt. 7, 1711 (1968)

  35. 35.

    N. Orazi, F. Mercuri, U. Zammit, C. Cicero, O. Colacicchi Alessandri, V. Brinkmann, G. Caruso, M. Ferretti, S. Paoloni, J. Archeol. Sci. Rep. 24, 115 (2019). https://doi.org/10.1016/j.jasrep.2018.12.016

Download references

Acknowledgements

The authors wish to thank Mirella Fidomanzo and Fiammetta Terlizzi, Biblioteca Angelica in Rome, and Rita Paris, Director of the Museo Nazionale Romano for granting the possibility to investigate the artworks and for their support.

Author information

Correspondence to Noemi Orazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mercuri, F., Caruso, G., Orazi, N. et al. Depth-Resolved Analysis of Double-Layered Cultural Heritage Artifacts by Pulsed Thermography. Int J Thermophys 41, 6 (2020). https://doi.org/10.1007/s10765-019-2587-0

Download citation

Keywords

  • Ancient books
  • Bronze statues
  • Infrared thermography
  • Opaque samples
  • Optically semi-transparent material