Anomaly in the Virial Expansion of IAPWS-95 at Low Temperatures

  • Allan H. HarveyEmail author


In the standard reference equation of state for the thermodynamic properties of water, known as IAPWS-95, the fourth virial coefficient D(T) becomes abnormally large in magnitude at temperatures below approximately 300 K. At conditions where a virial expansion using only second and third virial coefficients should be essentially exact (such as vapors at pressures near 100 Pa or 1000 Pa), such a truncated expansion may miss on the order of 2 % of the deviation from ideal-gas behavior in the compressibility factor or the fugacity. The term in IAPWS-95 that causes this issue is identified, and suggestions are made for future equation-of-state development.


Fugacity Virial coefficients Water 



The author thanks Dr. Ian Bell of NIST for several helpful suggestions.


  1. 1.
    International Association for the Properties of Water and Steam, IAPWS R6-95(2018), Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Accessed 26 Aug 2019
  2. 2.
    W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)CrossRefGoogle Scholar
  4. 4.
    J.M. Prausnitz, R.N. Lichtenthaler, E. Gomes de Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edn. (Prentice Hall, Upper Saddle River, 1999)Google Scholar
  5. 5.
    R. Feistel, J.W. Lovell-Smith, O. Hellmuth, Int. J. Thermophys. 36, 44 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    L. Greenspan, J. Res. Nat. Bur. Stand. 80A, 41 (1976)CrossRefGoogle Scholar
  7. 7.
    R.W. Hyland, A. Wexler, ASHRAE Trans. 89, 520 (1983)Google Scholar
  8. 8.
    A.H. Harvey, E.W. Lemmon, NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 3.0 (National Institute of Standards and Technology, Gaithersburg, 2013)Google Scholar
  9. 9.
    K.M. Benjamin, J.K. Singh, A.J. Schultz, D.A. Kofke, J. Phys. Chem. B 111, 11463 (2007)CrossRefGoogle Scholar
  10. 10.
    W. Wagner, T. Riethmann, R. Feistel, A.H. Harvey, J. Phys. Chem. Ref. Data 40, 043103 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Herrig, M. Thol, A.H. Harvey, E.W. Lemmon, J. Phys. Chem. Ref. Data 47, 043102 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. Harvey, E.W. Lemmon, J. Phys. Chem. Ref. Data 33, 369 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    G. Garberoglio, P. Jankowski, K. Szalewicz, A.H. Harvey, Faraday Discuss. 212, 467 (2018)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Applied Chemicals and Materials DivisionNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations