Advertisement

Type 3 Non-uniqueness in Interpolations Using Standard Platinum Resistance Thermometers Between − 196 °C and 100 °C

  • R. L. RusbyEmail author
  • H. Stemp
  • J. V. Pearce
  • R. I. Veltcheva
Article
  • 48 Downloads

Abstract

This paper reports on precise measurements of the non-uniqueness (interpolation errors) associated with using Standard Platinum Resistance Thermometers (SPRTs) in the range from − 196 °C to 100 °C. Six long-stem SPRTs were compared with unprecedented (< 0.1 m°C) precision in a stirred oil bath from 100 °C down to − 95 °C, with an additional comparison measurement in a bath of liquid nitrogen at − 196 °C. The measurements resulted in a highly self-consistent set of resistance ratios W(t), where W(t) = R(t)/R(0 °C). Selecting the first SPRT as the reference, the differences (Wx − Wref), x = 2 to 6, were calculated, in the manner of the International Temperature Scale of 1990, ITS-90, and then used to investigate the consistency of interpolations between the SPRTs in various temperature ranges. With some minor exceptions, the data suggest that the interpolation consistency (taken to be an upper limit for the Type 3 non-uniqueness between the SPRTs) was ± 0.03 m°C from − 38 °C to 30 °C (representing the mercury-to-gallium subrange in the ITS-90), ± 0.1 m°C from − 95 °C to 80 °C, and ± 0.2 m°C at − 95 °C for interpolations extending from − 196 °C to 0 °C (no data could be taken between − 196 °C and − 95 °C). Various interpolation schemes are investigated, especially to examine ways of avoiding the use of the mercury triple point. One scheme investigated is simply to omit the mercury point and instead to extend the subrange from the argon point up to the gallium point or further, up to 80 °C. Similarly, the ITS-90 subranges to the indium, tin, zinc, or aluminum points could usefully be extended down to the argon point, with suitably adapted interpolation equations. These possibilities remain to be investigated.

Keywords

ITS-90 Non-uniqueness SPRT 

Notes

Acknowledgments

This work was funded by the UK National Measurement System for Engineering and Flow Metrology. HS gratefully acknowledges support from the South-East Physics Network for her vacation studentship at NPL.

References

  1. 1.
    The International Temperature Scale of 1990, Bureau International des Poids et Mesures (1990), see http://www.bipm.org under CCT publications, or H. Preston-Thomas, Metrologia 27, 3–10 and 107 (1990)
  2. 2.
    B.W. Mangum, P. Bloembergen, M.V. Chattle, B. Fellmuth, P. Marcarino, A.I. Pokhodun, Metrologia 34, 427–429 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Guide to the Realization of the ITS-90, Chapter 5: Platinum Resistance Thermometry, Bureau International des Poids et Mesures (2016), see http://www.bipm.org under CCT publications
  4. 4.
    K. Zhiru, L. Jingbo, L. Xiaoting, Metrologia 39, 127–133 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    K. Zhiru, J. Lan, J. Zhang, K.D. Hill, J. Sun, J. Chen, Int. J. Thermophys. 32, 68–85 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    D.R. White, G.F. Strouse, Metrologia 46, 101–108 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J.V. Pearce, J. Crabb, C.J. Elliott, R.L. Rusby, Int. J. Thermophys. 37, 124 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Sun, J.T. Zhang, Z.R. Kang, Y. Duan, Int. J. Thermophys. 31, 1789–1794 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    R.L. Rusby, J.V. Pearce, C.J. Elliott, Int. J. Thermophys. 38, 186 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    S.D. Ward, J.P. Compton, Metrologia 15, 31 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    K.D. Hill, A.G. Steele, in Temperature, Its Measurement and Control in Science and Industry vol. 7, ed D.C. Ripple (AIP, New York, 2003), pp 53–58Google Scholar
  12. 12.
    G. Coppa, A. Merlone, Measurement 89, 109–113 (2016)CrossRefGoogle Scholar
  13. 13.
    E. Filipe, S. Gentil, I. Loio, R. Bosma, A. Peruzzi, Int. J. Thermophys. 39, 26 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    P. Bramley, J Pickering Cal Lab 4, 30–35 (2006)Google Scholar
  15. 15.
    R.L. Rusby, G.J.M. Sutton, L.R. Stanger, R.I. Veltcheva, Int. J. Thermophys. 35, 657–667 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    W.L Tew, K.N. Quelhas, J. Res. NIST, Vol 123, Article No 12013 (2018)Google Scholar
  17. 17.
    D.I. Head, Y. Hermier, R.L Rusby, G. Bonnier, M. Wei, 4 th symposium on temperature and thermal measurement in industry and science, Finnish Society of Automatic Control, 1990, pp 118–125Google Scholar
  18. 18.
    G.J.M Sutton, D.I. Head, Proceedings of the IMEKO International Seminar on Low Temperature Thermometry and Dynamic Temperature Measurement, ed. A. Szmyrka-Grzebyk, Wrocław, 1997, pp L24–L29Google Scholar
  19. 19.
    K.D. Hill, A.G. Steele, Metrologia 42, 278 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    P.P.M. Steur, P.M.C. Rourke, D. Giraudi, Metrologia 56, 015008 (2019)CrossRefGoogle Scholar
  21. 21.
    K.D. Hill, Metrologia 32, 87 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Rusby, Int. J. Thermophys. 31, 1567–1572 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  1. 1.Engineering, Materials and Electrical StandardsNational Physical LaboratoryTeddingtonUK

Personalised recommendations