Advertisement

A New Empirical Equation for the Specific Thermal Capacity of Aqueous LiCl Solutions in a Wide Range of Conditions

  • Yijian He
  • Chao Cao
  • Jiachen Xu
  • Yue Sun
  • Zepeng Chen
  • Guangming ChenEmail author
Article
  • 3 Downloads

Abstract

Aqueous LiCl solutions are typical desiccants. Specific thermal capacity data, covering the temperatures range from 233.15 K to 343.15 K and salt mass fractions ranging from 0.15 to 0.45, have been obtained experimentally. The correlating equation proposed reproduces these experimental data with an average absolute deviation of 0.35 %, and a maximum absolute deviation of 1.15 %. Experimental data from the literature, and theory-based calculations, are reproduced by the new equation with a maximum deviation of 16.13 %, and 10.77 %, respectively.

Keywords

Aqueous LiCl solution Correlation equation Isobaric heat capacity Liquid desiccant 

Notes

Acknowledgments

This work is supported by National Key Research and Development Plan of China (2016YFB0901404), Cultural Bureau of Zhejiang Province (Grant no. 2016008), and National Natural Science Foundation of China (Grant no. 51206140).

References

  1. 1.
    F.M. Gómez-Castro, D. Schneider, T. Päßler, U. Eicker, Renew. Sustain. Energy Rev. 82, 545–575 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Misha, S. Mat, M.H. Ruslan, K. Sopian, Renew. Sustain. Energy Rev. 16, 4686–4707 (2012)CrossRefGoogle Scholar
  3. 3.
    Y.G. Yin, J.F. Qian, X.S. Zhang, Renew. Sustain. Energy. Rev. 31, 38–52 (2014)CrossRefGoogle Scholar
  4. 4.
    M.V. Rane, S.V.K. Reddy, R.R. Easow, Appl. Therm. Eng. 25, 769–781 (2005)CrossRefGoogle Scholar
  5. 5.
    K. Gommed, G. Grossman, F. Ziegler, J. Sol. Energy Eng. 126, 710–715 (2004)CrossRefGoogle Scholar
  6. 6.
    M.M. Rafique, P. Gandhidasan, H.M.S. Bahaidarah, Renew. Sustain. Energy Rev. 56, 179–195 (2016)CrossRefGoogle Scholar
  7. 7.
    W.C. Tsair, J. Sep. Sci. 32, 1389–1402 (1997)CrossRefGoogle Scholar
  8. 8.
    Y. Li, G. Chen, L. Tang, L. Liu, Build. Environ. 46, 2052–2059 (2011)CrossRefGoogle Scholar
  9. 9.
    S. Zhang, J. Luo, G. Chen, Q. Wang, Dry. Technol. 36, 697–708 (2018)CrossRefGoogle Scholar
  10. 10.
    W.S. Tucker, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 215, 319–351 (1915)ADSCrossRefGoogle Scholar
  11. 11.
    M.R. Conde, Int. J. Therm. Sci. 43, 367–382 (2004)CrossRefGoogle Scholar
  12. 12.
    T.W. Richards, A.W. Rowe, J. Am. Chem. Soc. 43, 770–796 (1921)CrossRefGoogle Scholar
  13. 13.
    F.T. Gucker, K.H. Schminke, J. Am. Chem. Soc. 54, 1358–1373 (1932)CrossRefGoogle Scholar
  14. 14.
    A.F. Kapustinskii, M.S. Stakhanova, V.A. Vasiliev, Russ. Chem. Bull. 9, 1933–1939 (1960)CrossRefGoogle Scholar
  15. 15.
    H. Rueterjans, F. Schreiner, U. Sage, T. Ackermann, J. Phys. Chem. 73, 986–994 (1969)CrossRefGoogle Scholar
  16. 16.
    J.L. Fortier, P.A. Leduc, J.E. Desnoyers, J. Solut. Chem. 3, 323–349 (1974)CrossRefGoogle Scholar
  17. 17.
    D.E. White, J.A. Gates, R.H. Wood, J. Chem. Thermodyn. 19, 1037–1045 (1987)CrossRefGoogle Scholar
  18. 18.
    Y. He, N. Gao, G. Chen, J. Chem. Thermodyn. 70, 81–87 (2014)CrossRefGoogle Scholar
  19. 19.
    S.A. Klein, F. Alvarado, EES—engineering equation solver, version 9.716 (F - Chart Software, Middleton, 2014)Google Scholar
  20. 20.
    D.G. Archer, J. Phys. Chem. Ref. Data 22, 1441–1453 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    K.Z. Jauch, Phys. 4, 441–447 (1921)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yijian He
    • 1
  • Chao Cao
    • 1
  • Jiachen Xu
    • 1
  • Yue Sun
    • 1
  • Zepeng Chen
    • 1
  • Guangming Chen
    • 1
    Email author
  1. 1.Key Laboratory of Refrigeration and Cryogenics Technology of Zhejiang Province, Institute of Refrigeration and CryogenicsZhejiang UniversityHangzhouChina

Personalised recommendations