Advertisement

Comments on “Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?”

  • Marc J. AssaelEmail author
  • William A. Wakeham
Comment
  • 48 Downloads

Abstract

The paper seeks to answer a question posed in a recent paper by Hasselman [1] in this journal concerning the application of the transient hot-wire method to the measurement of the thermal conductivity of fluids in general, and the effective thermal conductivity of nanofluids, in particular. At the same time, the paper corrects a number of errors of fact and assertion made in that paper.

Keywords

Nanofluid Thermal conductivity Transient hot wire 

Notes

References

  1. 1.
    D.P.H. Hasselman, Int. J. Thermophys. 39, 109 (2018)Google Scholar
  2. 2.
    S.U.S. Choi, J.A. Eastman, Pres. ASME Congress (San Francisco, 1995)Google Scholar
  3. 3.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2254 (2001)ADSGoogle Scholar
  4. 4.
    G.J. Tertsinidou, Ch. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities. J. Chem. Eng. Data 62, 491 (2017)Google Scholar
  5. 5.
    S.M.S. Murshed, K.C. Leong, C. Yang, Appl. Therm. Eng. 28, 2109 (2008)Google Scholar
  6. 6.
    R. Saidur, K.Y. Leong, H.A. Mohammad, Ren. Sust. Environ. Rev. 15, 1646 (2011)Google Scholar
  7. 7.
    S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transf. Eng. 27, 3 (2006)ADSGoogle Scholar
  8. 8.
    J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, Ann. Rev. Mater. Res. 34, 219 (2004)ADSGoogle Scholar
  9. 9.
    N.A. Roberts, D.G. Walker, Appl. Therm. Eng. 30, 2499 (2010)Google Scholar
  10. 10.
    M. Rafati, A.A. Hamidi, N.M.S., Appl. Therm. Eng. 45–46, 9 (2012)Google Scholar
  11. 11.
    T. Yousefi, S.A. Mousavi, B. Farahbakhsh, M.Z. Saghir, Microelectron. Reliab. 53, 1954 (2013)Google Scholar
  12. 12.
    D.P. Kulkarni, D.K. Das, R.S. Vajjha, Appl Energy 86, 2566 (2009)Google Scholar
  13. 13.
    R.A. Taylor, P.E. Phelan, T.P. Otanicar, C.A. Walker, M. Nguyen, S. Trimble, R.J. Prasher, Ren. Sust. Energy 3, 023104 (2011)Google Scholar
  14. 14.
    A. Lenert, E.N. Wang, Sol. Energy 86, 253 (2012)ADSGoogle Scholar
  15. 15.
    F.S. Javadi, R. Saidur, M. Kamalisarvestani, Ren. Sust. Energy Rev. 28, 232 (2013)Google Scholar
  16. 16.
    C.A. Nieto de Castro, M.J.V. Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, J. Chem. Eng. Data 55, 653 (2010)Google Scholar
  17. 17.
    S.M.S. Murshed, C.A. Nieto de Castro (eds.), Nanofluids, Synthesis, Properties and Applications (Nova Publishers, New York, 2014)Google Scholar
  18. 18.
    G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 1367 (2015)ADSGoogle Scholar
  19. 19.
    K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 37, 78 (2016)ADSGoogle Scholar
  20. 20.
    M.J. Assael, I.N. Metaxa, K. Kakosimos, D. Konstandinou, Int. J. Thermophys. 27, 997 (2006)ADSGoogle Scholar
  21. 21.
    C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Appl. Phys. Lett. 87, 153107 (2005)ADSGoogle Scholar
  22. 22.
    H.E. Patel, T. Sundararajan, S.K. Das, J. Nanopart. Res. 12, 1015 (2010)ADSGoogle Scholar
  23. 23.
    S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 47, 560 (2008)Google Scholar
  24. 24.
    T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Thermochim. Acta 545, 48 (2012)Google Scholar
  25. 25.
    G.A. Longo, C. Zilio, Exp. Therm. Fluid Sci. 35, 1313 (2011)Google Scholar
  26. 26.
    X. Feng, D.W. Johnson, J. Nanopart. Res. 15, 1718 (2013)ADSGoogle Scholar
  27. 27.
    D.H. Yoo, K.S. Hong, H.S. Yang, Thermochim. Acta 455, 66 (2007)Google Scholar
  28. 28.
    H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)Google Scholar
  29. 29.
    B. Barbes, R. Paramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C. Casanova, J. Therm. Anal. Calorim. 111, 1615 (2013)Google Scholar
  30. 30.
    G. Colangelo, E. Favale, A. Risi, D. Laforgia, Appl. Energy 97, 828 (2012)Google Scholar
  31. 31.
    D.W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29, 1456 (2008)Google Scholar
  32. 32.
    D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181 (2004)Google Scholar
  33. 33.
    E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Phys. Rev. E 76, 061203 (2007)ADSGoogle Scholar
  34. 34.
    S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567 (2003)Google Scholar
  35. 35.
    S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)Google Scholar
  36. 36.
    C.H. Li, G.P. Peterson, J. Appl. Phys. 99, 084314 (2006)ADSGoogle Scholar
  37. 37.
    J.A. Eastman, U.S. Choi, S. Li, L.J. Thomson, S. Lee, Mater. Res. Soc. Symp. Proc. 457, 3 (1997)Google Scholar
  38. 38.
    A. Kazemi-Beydokhti, S.Z. Heris, N. Moghadam, M. Shariati-Niasar, A.A. Hamidi, Chem. Eng. Comm. 201, 593 (2014)Google Scholar
  39. 39.
    I. Tavman, A. Turgut, Microfluidics Based Microsystems: Fundamentals and Applications (Springer, New York, 2010), p. 139Google Scholar
  40. 40.
    X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)Google Scholar
  41. 41.
    X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)ADSGoogle Scholar
  42. 42.
    S.A. Angayarkanni, J.J. Philip, J Phys Chem 117, 9009 (2013)Google Scholar
  43. 43.
    Z. Said, M.H. Sajida, M.A. Alima, R. Saidur, N.A. Rahimb, Int. Comm. Heat Mass Transf. 48, 99 (2013)Google Scholar
  44. 44.
    R.L. Hamilton, O.K. Crosser, I&EC Fundam. 1, 187 (1962)Google Scholar
  45. 45.
    M. Corcione, Energ. Convers. Manag. 52, 789 (2011)Google Scholar
  46. 46.
    K.N. Shukla, T.M. Koller, M.H. Rausch, A.P. Froba, Int. J. Heat Mass Transf. 99, 532 (2016)Google Scholar
  47. 47.
    K.C. Leong, C. Yang, S.M.S. Murshed, J. Nano Res. 8, 245 (2006)Google Scholar
  48. 48.
    B. Xiao, Y. Yang, L. Chen, Powder Technol. 239, 409 (2013)Google Scholar
  49. 49.
    L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)ADSGoogle Scholar
  50. 50.
    Y. Feng, B. Yu, M. Zou, J. Phys. D Appl. Phys. 40, 3164 (2007)ADSGoogle Scholar
  51. 51.
    H. Xie, M. Fujii, X. Zhang, Int. J. Heat Mass Transf. 48, 2926 (2005)Google Scholar
  52. 52.
    J. Xu, B. Yu, M. Zou, P. Xu, J. Appl. Phys. 39, 4486 (2006)Google Scholar
  53. 53.
    J. Koo, C. Kleinstreuer, J. Nano Res. 6, 577 (2004)Google Scholar
  54. 54.
    R. Prasher, W. Evans, P. Meakin, J.P. Phelan, P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006)ADSGoogle Scholar
  55. 55.
    M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, Chapter 7, Transient methods for thermal conductivity, in Experimental Thermodynamics. Vol. III. Measurement of the Transport Properties of Fluids (Blackwell, New York, 1991)Google Scholar
  56. 56.
    J. Kestin, R. Paul, A.A. Clifford, W.A. Wakeham, Phys A 100, 349 (1980)Google Scholar
  57. 57.
    M.J. Assael, M. Dix, A. Lucas, W.A. Wakeham, J Chem Soc Faraday Trans 177, 439 (1981)Google Scholar
  58. 58.
    E.F. May, M.R. Moldover, R.F. Berg, J.J. Hurly, Metrologia 43, 247 (2006)ADSGoogle Scholar
  59. 59.
    E.F. May, M.R. Moldover, R.F. Berg, Int. J. Thermophys. 28, 1085 (2007)ADSGoogle Scholar
  60. 60.
    M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, J. Phys. Chem. Ref. Data 47, 021501 (2018)ADSGoogle Scholar
  61. 61.
    W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)ADSGoogle Scholar
  62. 62.
    M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham (eds.), Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids (RSC Press, London, 2014)Google Scholar
  63. 63.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. I. 3rd edn. (Dover, New York, 1954), p. 430Google Scholar
  64. 64.
    M.J. Assael, K.D. Antioniadis, W.A. Wakeham, X. Zhang, Int. J. Heat Mass Transf. 138, 597 (2019)Google Scholar
  65. 65.
    G. Tertsinidou, J.C. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data 63, 4277 (2018)Google Scholar
  66. 66.
    S. Maruyama, T. Kimura, Therm. Sci. Eng. 63, 7 (1999)Google Scholar
  67. 67.
    G. Balasubramanian, S. Banerjee, I.K. Puri, J. Appl. Phys. 104, 064 (2008)Google Scholar
  68. 68.
    D. Torii, T. Ohara, K. Ishida, J. Heat Transf. 132, 012402 (2010)Google Scholar
  69. 69.
    Y. Wang, P. Keblinski, Appl. Phys. Lett. 99, 073112 (2011)ADSGoogle Scholar
  70. 70.
    M. Han, J. Mech. Sci. Technol. 25, 37 (2011)Google Scholar
  71. 71.
    H. Harikrishna, W.A. Ducker, S.T. Huxtable, Appl. Phys. Lett. 102, 251606 (2013)ADSGoogle Scholar
  72. 72.
    Y. Chen, C. Zhang, Int. J. Heat Mass Transf. 78, 624 (2014)Google Scholar
  73. 73.
    M.E. Caplan, A. Giri, P.E. Hopkins, J. Chem. Phys. 140, 154701 (2014)ADSGoogle Scholar
  74. 74.
    M. Seddiq, M. Maerefat, M. Mirzaei, Int. J. Therm. Sci. 75, 28 (2014)Google Scholar
  75. 75.
    O.M. Wilson, X.Y. Hu, D.G. Cahill, P.V. Braun, Phys. Rev. 66, 224301 (2002)Google Scholar
  76. 76.
    S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, D.J. Cahill, J. Appl. Phys. 95, 8136 (2004)ADSGoogle Scholar
  77. 77.
    M.V. Peralta-Martinez, M.J. Assael, M. Dix, L. Karagiannidis, W.A. Wakeham, Int. J. Thermophys. 27, 353 (2006)ADSGoogle Scholar
  78. 78.
    Y. Benveniste, T. Miloh, Int. J. Eng. Sci. 24, 153 (1986)Google Scholar
  79. 79.
    D.P.H. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508 (1987)ADSGoogle Scholar
  80. 80.
    Y.C. Chiew, E.D. Glandt, Chem. Eng. Sci. 42, 2677 (1987)Google Scholar
  81. 81.
    C.-W. Nan, R. Barringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997)ADSGoogle Scholar
  82. 82.
    Y. Benveniste, J. Appl. Phys. 61, 2840 (1987)ADSGoogle Scholar
  83. 83.
    H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, J. Appl. Phys. 91, 4568 (2002)ADSGoogle Scholar
  84. 84.
    L. Xue, P. Keblinski, S.R. Philpot, S.U.S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)ADSGoogle Scholar
  85. 85.
    C.H. Li, G.P. Peterson, J. Appl. Phys. 101, 044312 (2007)ADSGoogle Scholar
  86. 86.
    S.P. Lee, M.H. Lee, M.T. Kim, J.M. Oh, Trans. Korean Soc. Mec. Eng. 28, 510 (2004)Google Scholar
  87. 87.
    H.E. Patel, S.K. Das, T. Sundararajan, A. Sreekumaran, B. George, T. Pradeep, Appl. Phys. Lett. 85, 2931 (2003)ADSGoogle Scholar
  88. 88.
    H. Xie, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)ADSGoogle Scholar
  89. 89.
    R. Agarwal, K. Verma, N.K. Agrawal, R. Singh, Exp. Therm. Fluid Sci. 80, 19 (2017)Google Scholar
  90. 90.
    S. Shiozawa, G.S. Campbell, Remote Sens. Rev. 5, 301 (1990)Google Scholar
  91. 91.
    K.L. Bristow, R.D. White, G.J. Kluitenberg, Austr. J. Soil Res. 32, 447–464 (1994)Google Scholar
  92. 92.
    M.M. Ghosh, S. Roy, S.K. Pabi, S. Ghosh, J. Nanosci. Nanotechnol. 11, 2196 (2011)Google Scholar
  93. 93.
    M.M. Ghosh, S. Ghosh, S.K. Pabi, Int. J. Mod. Eng. Res. 1, 400 (2011)Google Scholar
  94. 94.
    M.M. Ghosh, S. Ghosh, S.K. Pabi, J. Mater. Eng. Perform. 22, 1525 (2013)Google Scholar
  95. 95.
    J.J. Healy, J.J. deGroot, J. Kestin, Physica 82C (1976)Google Scholar
  96. 96.
    A. Nagashima, J.V. Sengers, W.A. Wakeham, (eds.), Experimental Thermodynamics. Vol. III. Measurement of the Transport Properties of Fluids (Blackwell, New York, 1991)Google Scholar
  97. 97.
    P.A. Egelstaff, Chapter 11, an Introduction to the Liquid State, 2nd edn. (Clarendon Press, Oxford, 1994)Google Scholar
  98. 98.
    J.C.G. Calado, J.M.N.A. Fareleira, C.A.N. de Castro, W. W.A., Rev. Port. Quim. 26, 173 (1984)Google Scholar
  99. 99.
    D.P.H. Hasselman, Int. J. Thermophys. (2019).  https://doi.org/10.1007/s10765-019-2519-z
  100. 100.
    S. Senthilraja, K. Vijayakumar, R. Gangadevi, “A Comparative Study of Thermal Conductivity of Al2O3/Water, CuO/Water and Al2O3–CiO/Water Nanofluids”, Dig. J. Nanomat. Biostruct. 10:1449–1458 (2015)—(or www.reade.com or www.azom.com or www.ferp.ucsd.edu)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations