Advertisement

Experimental and Numerical Investigation of Thermo-Mechanical Properties for Nano-Geocomposite

  • Zarghaam Haider RizviEmail author
  • Katrin Sembdner
  • Akash Suman
  • Melpatti Jothiappan Giri Prasad
  • Frank Wuttke
Article

Abstract

Heat transfer in dry granular material is dominated by conduction among the grains. The quality and quantity of the contact dictate the preferred heat path. Owing to the high thermal conductivity and considerable mechanical strength, nanomaterials are suitable to improve the contact by filling inter- and intra-granular pores. A thermo-mechanical study with 0–5 weight percentage of 63 nm and 125 nm silicon carbide (SiC)/sand mixtures has been conducted. A numerical model based on a modified effective-medium approximation considering the effective mean free path is implemented in the lattice element method with gas theory to predict the ETC of the mixtures. The numerical modeling and experimental results showed satisfactory agreement to a large extent. To test the mechanical stability of the developed mix, direct shear test and consolidation tests have been performed on the nano-geomixture to observe changes in the mechanical strength due to a powder-like appearance of SiC. No significant reduction in strength and settlement behavior of the mixture has been reported. The developed nanocomposite could be used in energy geotechnics application.

Keywords

Effective thermal conductivity Energy geotechnics Lattice element method Nanocomposite Numerical modeling 

List of Symbols

hTTC

Total contact conductivity (W·m−1·K−1)

hG

Granular conductivity (W·m−1·K−1)

hN

Nanoparticle conductivity (W·m−1·K−1)

Ci

Volumetric heat capacity per unit energy (J·m−3·K−1)

vi

Group velocity (m·s−1)

λi

Mean free path of the charge carriers (electrons or phonons) (m)

λi,m

Effective mean free path (m)

λii,m

Mean free path associated with the carrier-to-carrier scattering (m)

λib,m

Mean free path associated with the boundary collisions, m

AC

Collision cross section between the particle and the charge carrier (m2)

N

Concentration of particle (m−3)

L

Distance travelled by the charge carriers (m)

λib,m

Mean free path due to particle addition (m)

σC

Effective area of collision per unit volume for each particle (m−1)

Ki,m

Bulk thermal conductivity of the grain (W·m−1·K−1)

λi,p

Effective mean free path of the charge carriers inside the particle, (m)

λii.p

Mean free path due to carrier-to-carrier scattering within the particle (m)

cd

Average distance travelled by the charge carriers inside the particle (m)

Ki,p

Bulk thermal conductivity of the particle (W·m−1·K−1)

Greek Symbols

ϕ

Volume fraction

λ

Sphericity

φ

Friction angle

Notes

Acknowledgement

This research project is financially supported by the research Grant 03G0866B (GeoMInt) provided by the Federal Ministry of Education and Research, Germany. We would like to thanks Dr. Y.K. Mishra, Technical Faculty, Kiel University, for providing SEM images.

References

  1. 1.
    Paris Agreement, FCCC/CP/2015/L.9/Rev.1. United Nations Framework Convention on Climate Change (UNFCCC) Secretariat (2015). Retrieved 12 December 2015Google Scholar
  2. 2.
    I. Sarbu, C. Sebarchievici, General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 70, 441–454 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Choi, S.R. Lee, D.S. Lee, Numerical simulation of vertical ground exchangers: intermittent operation in unsaturated soil conditions. Comput. Geotech. 38, 949–958 (2011)CrossRefGoogle Scholar
  4. 4.
    G.A. Akrouch, M. Sanchez, J.L. Briaud, Effect of the unsaturated soil condition on the thermal efficiency of energy piles. In: IFCEE, pp. 1618–1627 (2015)Google Scholar
  5. 5.
    Z.H. Rizvi, D. Shrestha, A.S. Sattari, F. Wuttke, Numerical modelling of effective thermal conductivity for modified geomaterial using Lattice Element Method. Heat Mass Transf. 54, 483–499 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    D. Shrestha, Z.H. Rizvi, F. Wuttke, Effective thermal conductivity of unsaturated granular geocomposite using Lattice Element Method. Heat Mass Transf. (2018). https://link.springer.com/article/10.1007/s00231-018-02544-3
  7. 7.
    T. Yun, J. Santamarina, Fundamental study of thermal conduction in dry soils. Grand Matter 10, 197–207 (2008)CrossRefGoogle Scholar
  8. 8.
    D.P.H. Hasselmanand, L.F. Johnson, Compos. Mater. 21, 508 (1987)CrossRefGoogle Scholar
  9. 9.
    C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    A. Carminati, A. Kaestner, P. Lehman, H. Flühler, Unsaturated water flow across soil aggregate contacts. Adv. Water Resour. 31, 1221–1232 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    R. Horn, A. Smucker, Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 82, 5–14 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Venuleo, L. Laloui, D. Terzis, T. Hueckel, M. Hassan, Microbially induced calcite precipitation effect on soil thermal conductivity. Géotech. Lett. 6, 39–44 (2016)CrossRefGoogle Scholar
  13. 13.
    A.J. Phillips, A.B. Cunningham, R. Gerlach et al., Fracture sealing with microbially-induced calcium carbonate precipitation: a field study. Environ. Sci. Technol. 50, 4111–4117 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Z.H. Rizvi, K. Sembdner, A.S. Sattari, F. Wuttke Potential of nano material (SiC) for improving the thermal properties of sand. In: Energy Geotechnics, pp. 419–422 (2016)Google Scholar
  15. 15.
    Z.H. Rizvi, S. Panda, M.A. Khan, F. Wuttke, Improvement of fracture toughness of soil with ZnO tetrapod. Mater. Today Proc. 5, 18325–18331 (2018)CrossRefGoogle Scholar
  16. 16.
    Z.H. Rizvi, N. Nissar, M.J. Giri Prasad, M.A. Khan, S.F. Husain, F. Wuttke, Improvement of uniaxial compression of soil with znotetrapods. Mater. Today Proc. 5, 28180–28185 (2018)CrossRefGoogle Scholar
  17. 17.
    H. Pham, Q.P. Nguyen, Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J. Nanopart. Res. 16, 2137 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Mohammadi, M. Niazian, Investigation of nano-clay effect on geotechnical properties of Rasht clay. J. Adv. Sci. Technol. 3, 37–46 (2013)Google Scholar
  19. 19.
    M.R. Taha, O.M.E. Taha, Influence of nano-material on the expansive and shrinkage soil behavior. J. Nanopart. Res. 14, 1190 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    F. Changizi, A. Haddad, Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J. Rock Mech. Geotech. Eng. 7, 367–378 (2015)CrossRefGoogle Scholar
  21. 21.
    H.L. Luo, D.H. Hsiao, D.F. Lin, C.K. Lin, Sewage sludge ash/cement and nano aluminum oxide. J. Trans. Sci. Technol. 1, 83–100 (2012).  https://doi.org/10.1260/2046-0430.1.1.83 CrossRefGoogle Scholar
  22. 22.
    F. Changizi, A. Haddad, Effect of nanocomposite on the strength parameters of soil. KSCE J. Civ. Eng. 21, 676–686 (2015)CrossRefGoogle Scholar
  23. 23.
    D.G. Cahill, W.K. Ford, E.G. Kenneth et al., Nanoscale thermal transport. Appl. Phys. Rev. 93, 793–818 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    L.E. Nielsen, S. Lewis, The thermal and electrical conductivity of two phase systems. Ind. Eng. Chem. Fundam. 13, 17–20 (1994)CrossRefGoogle Scholar
  25. 25.
    P. Zehner, E.U. Schlunder, Thermal conductivity of granular materials at moderate temperatures. Chem. Inorg. Technol. 42, 933–941 (1970). [in German] Google Scholar
  26. 26.
    R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)CrossRefGoogle Scholar
  27. 27.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Clarendon Press, Oxford, 1881)zbMATHGoogle Scholar
  28. 28.
    R.G. Yang, G. Chen, M.S. Dresselhaus, Thermal conductivity modeling of core − shell and tubular. Nanowires Nano Lett. 5, 1111–1115 (2005).  https://doi.org/10.1021/nl0506498 ADSCrossRefGoogle Scholar
  29. 29.
    D.G. Cahill et al., Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A. Minnich, G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 1 (2007).  https://doi.org/10.1063/1.2771040 CrossRefGoogle Scholar
  31. 31.
    A. El Moumen, T. Kanit, A. Imad, H. El Minor, Computational thermal conductivity in porous materials using homogenization techniques: numerical and statistical approaches. Comput. Mater. Sci. 97, 148–158 (2015)CrossRefGoogle Scholar
  32. 32.
    Z.H. Rizvi, M.A. Khan, K. Sembdner, S.F. Husain, Numerical modelling of crack wave interaction with BEM. Mater. Today Proc. 5, 28253–28261 (2018)CrossRefGoogle Scholar
  33. 33.
    Z.H. Rizvi, A.S. Sattari, F. Wuttke, Numerical analysis of heat conduction in granular geo-material using lattice element method. In: Energy Geotechnics—Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT 2016, pp. 367–372 (2016)Google Scholar
  34. 34.
    Z.H. Rizvi, F. Wuttke, A.S. Sattari, Dynamic analysis by lattice element method simulation. In: Proceedings of China-Europe Conference on Geotechnical Engineering, Springer Series in Geomechanics and Geoengineering (2018). https://link.springer.com/chapter/10.1007/978-3-319-97112-4_91
  35. 35.
    F. Wuttke, A.S. Sattari, Z.H. Rizvi, H.B. Motra, Advanced meso-scale modelling to study the effective thermo-mechanical parameter in solid geomaterial. In: Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), Springer Series in Geomechanics and Geoengineering (2017). https://link.springer.com/chapter/10.1007%2F978-3-319-52773-4_9
  36. 36.
    A.S. Sattari, Z.H. Rizvi, H.B. Motra, F. Wuttke, Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granul, Matter 19, 66 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Nikolic, E. Karavelic, A. Ibrahimbegovic, P. Miscevic, Lattice element models and their peculiarities. Arch. Comput. Methods Eng. 25, 753–784 (2018)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Z.H. Rizvi, M. Nikolic, F. Wuttke, Lattice element method for simulations of failure in bio-cemented sands. Granul. Matter 21, 18 (2019)CrossRefGoogle Scholar
  39. 39.
    G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, 2005)Google Scholar
  40. 40.
    J. Ordonez-Miranda, J.J. Alvarado-Gil, Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72, 853–857 (2012)CrossRefGoogle Scholar
  41. 41.
    E.H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938)Google Scholar
  42. 42.
    S. Masamune, J.M. Smith, Thermal conductivity of beds of spherical particles. Ind. Eng. Chem. Fundam. 2, 136–143 (1963)CrossRefGoogle Scholar
  43. 43.
    O.T. Farouki, Thermal Properties of Soils (Cold Regions Research and Engineering Laboratory, Hannover, 1981)CrossRefGoogle Scholar
  44. 44.
    H. Zhang, A.J. Minnich, The best nanoparticle size distribution for minimum thermal conductivity. Sci. Rep. 5, 8995Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for GeosciencesKiel UniversityKielGermany

Personalised recommendations