Radiative heat transfer in Powell–Eyring nanofluid with peristalsis

  • Q. HussainEmail author
  • N. Alvi
  • T. Latif
  • S. Asghar


The radiative peristaltic flow of Powell–Eyring nanofluid with temperature-dependent viscosity in an asymmetric channel is considered. Mathematically, nonlinear radiation is accounted through Stefan–Boltzmann law. The governing equations with the appropriate constitutive equations for the non-Newtonian fluid are modeled in the wave frame of reference. Contrary to viscous fluid with linear radiation, these equations are highly nonlinear in nature. Semi-numerical solutions are obtained under well-established large wavelength and small Reynolds number approximations. Important features of fluid flow and heat transfer are discussed graphically for various physical parameters highlighting the influence of nonlinear radiation and variable viscosity.


Nanoparticles Nonlinear thermal radiation Non-Newtonian fluid Peristalsis Variable viscosity 



  1. 1.
    T.W. Latham, Fluid motion in a peristaltic pump. Master’s thesis, Massachusetts Institute of Technology (1966)Google Scholar
  2. 2.
    A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelength at low numbers. J. Fluid Mech. 37, 799–825 (1969)ADSCrossRefGoogle Scholar
  3. 3.
    Y.C. Fung, C.S. Yih, Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    M. Mishra, A.R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift für angewandte Mathematik und Physik 54, 532–550 (2003)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Srinivas, M. Kothandapani, Peristaltic transport in an asymmetric channel with heat transfer—a note. Int. Commun. Heat Mass Transf. 35, 514–522 (2008)CrossRefGoogle Scholar
  6. 6.
    KhS Mekheimer, Y. Abd elmaboud, Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A Stat. Mech. Its Appl. 387, 2403–2415 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Hussain, S. Asghar, T. Hayat, A. Alsaedi, Peristaltic transport of hydromagnetic Jeffrey fluid with temperature-dependent viscosity and thermal conductivity. Int. J. Biomath. 9, Article ID: 1650029 (2016)Google Scholar
  8. 8.
    R.E. Powell, H. Eyring, Mechanisms for the relaxation theory of viscosity. Nature 154, 427–428 (1944)ADSCrossRefGoogle Scholar
  9. 9.
    S. Noreen, M. Qasim, Peristaltic flow of MHD Eyring-Powell fluid in a channel. Eur. Phys. J. Plus 128, Article ID: 91 (2013)Google Scholar
  10. 10.
    T. Hayat, A. Tanveer, H. Yasmin, A. Alsaedi, Effects of convective conditions and chemical reaction on peristaltic flow of Eyring–Powell fluid. Appl. Bionics Biomech. 11, 221–233 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Tripathi, O. Bég, A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf 70, 61–70 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, Peristaltic transport of Powell–Eyring fluid in a curved channel with heat/mass transfer and wall properties. Int. J. Heat Mass Transf. 101, 156–165 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2005)CrossRefGoogle Scholar
  14. 14.
    KhS Mekheimer, M.S. Mohamed, T. Elnaqeeb, Metallic nanoparticles influence on blood flow through a stenotic artery. Int. J. Pure Appl. Math. 107, 201–220 (2016)CrossRefGoogle Scholar
  15. 15.
    N. Alvi, T. Latif, Q. Hussain, S. Asghar, Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Results Phys. 6, 1109–1125 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    O.U. Mehmood, C. Fetecau, A note on radiative heat transfer to peristaltic flow of Sisko fluid. Appl. Bionics Biomech. 2015, Article ID: 283892 (2015)Google Scholar
  17. 17.
    M. Kothandapani, J. Prakash, Influence of heat source, thermal radiation, and inclined magnetic field on peristaltic flow of a hyperbolic tangent nanofluid in a tapered asymmetric channel. IEEE Trans. NanoBiosci. 14, 385–392 (2015)CrossRefGoogle Scholar
  18. 18.
    T. Hayat, Z. Nisar, H. Yasmin, A. Alsaedi, Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J. Mol. Liq. 220, 448–453 (2016)CrossRefGoogle Scholar
  19. 19.
    K.S. Mekheimer, Y. Abd Elmaboud, Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 92, 1541–1555 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    T. Latif, N. Alvi, Q. Hussain, S. Asghar, Variable properties of MHD third order fluid with peristalsis. Results Phys. 6, 963–972 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S. Rosseland, Astrophysik und atom-theoretische Grundlagen (Springer, Berlin, 1931), pp. 41–44CrossRefGoogle Scholar
  22. 22.
    R. Tanner, Engineering Rheology (Oxford Science Publications, Oxford, 1985)zbMATHGoogle Scholar
  23. 23.
    M.M. Rashidi, S.A.M. Pour, T. Hayat, S. Obaid, Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput. Fluids 54, 1–9 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsCOMSATS UniversityIslamabadPakistan

Personalised recommendations