Advertisement

On the Controversy of Nanofluid Rheological Behavior

  • Leyla Raeisian
  • Jan Rudolf Eggers
  • Eckart Matthias LangeEmail author
  • Torsten Mattke
  • Andreas Bode
  • Stephan Kabelac
Article
  • 47 Downloads

Abstract

Different findings about suitable correlations to describe nanofluid viscosity can be explained based on the research presented in this paper. The effective viscosity of nanofluids is crucial when nanofluids are considered as heat carrier fluids. Despite many publications, however, no consensus about suitable correlations could be found in past years. Particularly, the impact of the shear rate on the viscosity is being discussed controversially. It is shown in this paper that these different findings can be explained considering the theory for the rheology of suspensions. Any measurement of viscosity over shear rate only shows a section of the entire rheological behavior. Thus, experimental results of shear thinning, Newtonian behavior and shear thickening of nanofluids can all be a part of this overall range of possible shear rates. This hypothesis is validated based on viscosity data from the literature and viscosity measurements over a wide range of shear rates for different nanofluids showing all three types of behavior.

Keywords

Nanofluids Shear rate Shear thickening Shear thinning Viscosity 

Notes

References

  1. 1.
    R.V. Pinto, F.A.S. Fiorelli, Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl. Therm. Eng. 108, 720–739 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Eggers, S. Kabelac, Radiative properties of a nanofluid mixture. J. Heat Transf. Conf. Kyoto 15, 5712–5725 (2014)Google Scholar
  3. 3.
    D. Lapotko, Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. J. Nanomed. 4, 813–845 (2009)CrossRefGoogle Scholar
  4. 4.
    O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy. J. Heat Mass Transf. 57, 582–594 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Treopia, A.L. Yarin, J.F. Foss, Springer of Experimental Fluid Mechanics (Springer, Netherlands, 2007)CrossRefGoogle Scholar
  6. 6.
    D.S. Viswanath, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids, Theory, Estimation, Experiment, and Data (Springer, Netherlands, 2007)zbMATHGoogle Scholar
  7. 7.
    H.A. Barnes, A Handbook of Elementary Rheology (Institute of Non-Newtonian Fluid Mechanics, University of Wales, Treforest, 2000)Google Scholar
  8. 8.
    J.G. Kirkwood, F.P. Buff, H.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17, 988–994 (1949)ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Kirkwood, The statistical mechanical theory of irreversible processes. J. Nuovo Cim. Supply 6, 233–236 (1949)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Born, H.S. Green, A General Kinetic Theory of Liquids (Cambridge University Press, London, 1949)zbMATHGoogle Scholar
  11. 11.
    S.E. Quiñones-Cisneros, U.K. Deiters, Generalization of the friction theory for viscosity modeling. J. Phys. Chem. B 110, 12820–12834 (2006)CrossRefGoogle Scholar
  12. 12.
    S.E. Quiñones Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, The friction theory (f-theory) for viscosity modeling. J. Fluid Phase Equilibria 169, 249–276 (2000)CrossRefGoogle Scholar
  13. 13.
    S.G. Brush, Theories of liquid viscosity. Chem. Rev. 62, 513–548 (1962)CrossRefGoogle Scholar
  14. 14.
    H. Eyring, J.O. Hirschfelder, The theory of liquid state. J. Phys. Chem. 4, 249–257 (1937)CrossRefGoogle Scholar
  15. 15.
    H. Eyring, Viscosity, plasticity and diffusion are examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)ADSCrossRefGoogle Scholar
  16. 16.
    F.C. Collins, Activation energy of the Eyring theory of liquid viscosity and diffusion. J. Phys. Chem. 26, 398–400 (1957)CrossRefGoogle Scholar
  17. 17.
    J. De Guzman, Relation between fluidity and heat of fusion. J. Anales Soc. Espan. Fia. Y. Quim. 11, 353–362 (1913)Google Scholar
  18. 18.
    L. Qun-Fang, H. Yu-Chen, L. Rui-Sen, Correlation of viscosities of pure liquids in a wide temperature range. J. Fluid Phase Equilibria 140, 221–231 (1997)CrossRefGoogle Scholar
  19. 19.
    F.W. Lima, The viscosity of binary liquid mixtures. J. Phys. Chem. 56, 1052–1054 (1952)CrossRefGoogle Scholar
  20. 20.
    M. Tamura, M. Kurata, Viscosity of binary liquid mixtures. J Bull. Chem. Soc. Jpn. 25, 32 (1952)CrossRefGoogle Scholar
  21. 21.
    R.K. Hind, E. Mclaughlin, U.R. Ubbelohde, Structure and viscosity of liquids, Camhore + pyrene mixtures. J. Trans. Faraday Soc. 56, 328–330 (1960)CrossRefGoogle Scholar
  22. 22.
    A. Einstein, Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys. 324, 289–306 (1906)ADSCrossRefGoogle Scholar
  23. 23.
    A. Einstein, Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys. 339, 591–592 (1911)ADSCrossRefGoogle Scholar
  24. 24.
    H. Chen, Y. Ding, C. Tan, Rheological behavior of nanofluids. N. J. Phys. 9, 1–24 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97 (1977)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Chen, A. Ding, A. Lapkin, Rheological behavior of nanofluids containing tube/rod-like nanoparticles. J. Powder Technol. 194, 132–141 (2009)CrossRefGoogle Scholar
  27. 27.
    K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. J. Heat Mass Transf. 57, 582–594 (2011)zbMATHGoogle Scholar
  28. 28.
    L. Mahbubul, R. Saidur, M. Amalina, Latest developments on the viscosity of nanofluids. J. Heat and Mass Transf. 55, 874–885 (2012)CrossRefGoogle Scholar
  29. 29.
    L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review. J. Renew. Sustain. Energy Rev. 25, 670–686 (2013)CrossRefGoogle Scholar
  30. 30.
    P.C. Mishra, S. Mukherhjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluid. Int. Nano Lett. 4, 109–120 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Prasher, S. Mukherjee, S.K. Nayak, A. Panda, Measurements of nanofluid viscosity and its implications for thermal applications. J. Appl. Phys. Lett. 89, 109–120 (2006)Google Scholar
  32. 32.
    M. Chandrasekar, S. Suresh, A.C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. J. Exp. Therm. Fluid Sci. 34, 210–216 (2010)CrossRefGoogle Scholar
  33. 33.
    K.B. Anoop, S. Kabelac, T. Sundararajan, D.K. Das, Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106, 43909 (2009)CrossRefGoogle Scholar
  34. 34.
    Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, Particle agglomeration and properties of nanofluids. J. Nanopart. Res. 14, 852 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    M.H. Buschmann, Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 162, 19–28 (2012)CrossRefGoogle Scholar
  36. 36.
    D.C. Venerus, J. Buongiorno, R. Christianson, Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications. J. Appl. Rheol. 20, 44582 (2010)Google Scholar
  37. 37.
    W. Tseng, C.H. Wu, Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. J. Ceram. Int. 29, 821–828 (2003)CrossRefGoogle Scholar
  38. 38.
    W.J. Tseng, C.H. Wu, Aggregiation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions. J. Acta Mater. 50, 3757–3766 (2000)CrossRefGoogle Scholar
  39. 39.
    W.J. Tseng, F. Tzeng, Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids. J. Colloids Surf. A 276, 34–39 (2006)CrossRefGoogle Scholar
  40. 40.
    J. Davies, J.G.P. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. J. Eur. Ceram. Soc. 20, 1539–1553 (2000)CrossRefGoogle Scholar
  41. 41.
    W.J. Tseng, C.L. Lin, Effects of dispersants on rheological behaviour of BaTiO3 powders in ethanol–isopropanol mixtures. J. Mater. Chem. Phys. 80, 232–238 (2003)CrossRefGoogle Scholar
  42. 42.
    W.J. Tseng, C.-N. Chen, Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41, 1213–1219 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    W.J. Tseng, S.Y. Li, Rheology of colloidal BaTiO3 suspension with ammoniumpolyacrylate as a dispersant. J. Mater. Sci. Eng. A 333, 314–319 (2002)CrossRefGoogle Scholar
  44. 44.
    B. Aladag, S. Halelfadl, N. Doner, T. Mare, S. Duret, P. Estelle, Experimental investigations of the viscosity of nanofluids at low temperatures. J. Appl. Energy 97, 876–880 (2012)CrossRefGoogle Scholar
  45. 45.
    R.Y. Hong, T.T. Pan, Y.P. Han, H.Z. Li, J. Ding, S. Han, Magneticfield synthesis of Fe3O4 nanoparticle used as a precursor of ferrofluids. J. Magn. Magn. Mater. 310, 37–47 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    R.Y. Hong, SGh Etemad, R. Bagheri, J. Thibault, Rheological properties of water-based Fe 3 O 4 ferrofluids. J. Chem. Eng. Sci. 62, 5912–5924 (2007)CrossRefGoogle Scholar
  47. 47.
    J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 103, 074301 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    M. Hojjat, SGh Etemad, R. Bagheri, J. Thibault, Rheological characteristics of non-Newtonian nanofluids: experimental investigation. J. Int. Commun. Heat Mass Transf. 38, 144–148 (2011)CrossRefGoogle Scholar
  49. 49.
    P. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. J. Exp. Therm. Fluid Sci. 32, 397–402 (2007)CrossRefGoogle Scholar
  50. 50.
    M. Kole, T.K. Dey, Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J. Phys. D 43, 315501 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H.A. Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. J. Heat Fluid Flow 28, 1492–1506 (2007)CrossRefGoogle Scholar
  52. 52.
    C. Nguyen, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? J. Therm. Sci. 47, 103–111 (2008)CrossRefGoogle Scholar
  53. 53.
    E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Generality of shear thickening in dense suspensions. J. Nat. Mater. 9, 220–224 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    N.J. Wagner, J.F. Brady, Generality of shear thickening in dense suspensions. J. Phys. Today 62, 27–32 (2009)CrossRefGoogle Scholar
  55. 55.
    D.R. Foss, J.F. Brady, Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J. Fluid Mech. 407, 167–200 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    T.N. Phung, J.F. Brady, G. Bossis, Stokesian Dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181–207 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leyla Raeisian
    • 1
  • Jan Rudolf Eggers
    • 1
  • Eckart Matthias Lange
    • 1
    Email author
  • Torsten Mattke
    • 2
  • Andreas Bode
    • 2
  • Stephan Kabelac
    • 1
  1. 1.Institute of ThermodynamicsLeibniz University HannoverHannoverGermany
  2. 2.BASF SELudwigshafen am RheinGermany

Personalised recommendations