Advertisement

Carbon Aerogel for Insulation Applications: A Review

  • Lei Hu
  • Rujie HeEmail author
  • Hongshuai LeiEmail author
  • Daining Fang
Article
  • 243 Downloads

Abstract

Carbon aerogels, based on resorcinol and formaldehyde precursors and prepared by supercritical drying and high-temperature carbonization, are nanostructured carbons. Carbon aerogels have very low thermal conductivity due to their nanosized pores and particle structures; thus, they are promising as applicants in high-temperature insulation applications. It is well known that the thermal conductivity of carbon aerogels is composed of many components and influenced by many factors, and this review discusses the heat transfer mechanisms of the carbon aerogels. The synthesis procedures of the carbon aerogels were also reviewed. Moreover, the weak mechanical properties of pristine carbon aerogels limit their applications; therefore, it is necessary to strengthen the carbon aerogels and improve their mechanical properties. The reinforced carbon aerogels were introduced and reviewed.

Keywords

Carbon aerogel Reinforced carbon aerogel Thermal conductivity Thermal transfer mechanism 

Notes

Acknowledgments

The authors sincerely thank the financial supports from the National Natural Science Foundation of China (Nos. 11402003, 51772028), Beijing Natural Science Foundation (2182064) and Young Elite Scientist Sponsorship (YESS) Program by CAST (2015QNRC001).

References

  1. 1.
    D.W. Schaefer, K.D. Keefer, Phys. Rev. Lett. 56, 2199 (1986)ADSGoogle Scholar
  2. 2.
    A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)Google Scholar
  3. 3.
    N. Husing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)Google Scholar
  4. 4.
    S.S. Kistler, Nature 127, 741 (1931)ADSGoogle Scholar
  5. 5.
    X.D. Wang, D. Sun, Y.Y. Duan, Z.J. Hu, J. Non Cryst. Solids 375, 31 (2013)ADSGoogle Scholar
  6. 6.
    G. Zu, J. Shen, L. Zou, Chem. Mater. 25, 4757 (2013)Google Scholar
  7. 7.
    K. Chen, Z. Bao, A. Du, J. Sol Gel Sci. Technol. 62, 294 (2012)Google Scholar
  8. 8.
    A. Biedunkiewicz, P. Figiel, M. Krawczyk, U. Gabriel-Polrolniczak, J. Therm. Anal. Calorim. 113, 253 (2013)Google Scholar
  9. 9.
    B. Alince, Colloid Polym. Sci. 253, 720 (1975)Google Scholar
  10. 10.
    A. Olli, J. Olli, Carbohydr. Polym. 75, 125 (2009)Google Scholar
  11. 11.
    J. Wang, M.W. Ellsworth, Ecs Transactions Lett. 19 (2009)Google Scholar
  12. 12.
    J.T. Korhonen, P. Hiekkataipale, J. Malm, R.H.A. Ras, ACS Nano 5, 1967 (2011)Google Scholar
  13. 13.
    M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook (Springer, Berlin, 2011), p. 215Google Scholar
  14. 14.
    J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Sol. Energy Mater. Sol. Cells 89, 275 (2005)Google Scholar
  15. 15.
    O. Nilsson, V. Bock, J. Fricke, in 22nd Thermal Conductivity Conference (Tempe, Arizona, 1993)Google Scholar
  16. 16.
    R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)ADSGoogle Scholar
  17. 17.
    D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non Cryst. Solids 351, 915 (2005)ADSGoogle Scholar
  18. 18.
    H. Jirglova, A.F. Perez-Cadenas, F.J. Maldonado-Hodar, Langmuir 25, 2461 (2009)Google Scholar
  19. 19.
    A.L. Peikolainen, F. Perez-Caballero, M. Koel, Oil Shale 25, 348 (2008)Google Scholar
  20. 20.
    D. Long, Q. Chen, L. Ling, Chem. Commun. 26, 3898 (2009)Google Scholar
  21. 21.
    W. Li, G. Reichenauer, Carbon 40, 2955 (2002)Google Scholar
  22. 22.
    D. Long, R. Zhang, L. Ling, J. Colloids Interface. Sci. 331, 40 (2009)ADSGoogle Scholar
  23. 23.
    A.K. Meena, G.K. Mishra, P.N. Nagar, J. Hazard Mater. 122, 161 (2005)Google Scholar
  24. 24.
    M. Wiener, G. Reichenauer, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 27, 1826 (2006)ADSGoogle Scholar
  25. 25.
    Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Carbon 40, 575 (2002)Google Scholar
  26. 26.
    J. Feng, Y. Jiang, C. Zhang, Mater. Lett. 65, 3454 (2011)Google Scholar
  27. 27.
    F. Hemberger, S. Weis, G. Reichenauer, H.P. Ebert, Int. J. Thermophys. 30, 1357 (2009)ADSGoogle Scholar
  28. 28.
    X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, J. Appl. Phys. 73, 581 (1993)ADSGoogle Scholar
  29. 29.
    V. Bock, O. Nilsson, J. Blumm, J. Fricke, J. Non Cryst. Solids 185, 233 (1995)ADSGoogle Scholar
  30. 30.
    M. Wiener, G. Reichenauer, H.P. Ebert, S. Braxmeier, F. Hemberger, Int. J. Thermophys. 30, 1372 (2009)ADSGoogle Scholar
  31. 31.
    G. Reichenauer, U. Heinemann, H.P. Ebert, Colloids Surf. A 300, 204 (2007)Google Scholar
  32. 32.
    O.J. Lee, K.H. Lee, K.P. Yoo, J. Non Cryst. Solids 298, 287 (2002)ADSGoogle Scholar
  33. 33.
    W.H. Xie, B.M. Zhang, S.Y. Du, Acta Aeronautica Et Astronautica Sinica 27, 650 (2006)Google Scholar
  34. 34.
    J. Feng, J. Feng, C. Zhang, J. Porous. Mater. 19, 551 (2012)Google Scholar
  35. 35.
    K. Swimm, G. Reichenauer, S. Vidi, H.P. Ebert, J. Sol Gel Sci. Technol. 9, 1 (2017)Google Scholar
  36. 36.
    S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101 (2010)Google Scholar
  37. 37.
    E.J. Zanto, A.M. And, J.A. Ritter, Ind. Eng. Chem. Res. 41, 3151 (2002)Google Scholar
  38. 38.
    M. Sprung, J. Am. Chem. Soc. 2, 334 (2002)Google Scholar
  39. 39.
    S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 19, 6138 (2007)Google Scholar
  40. 40.
    H. Tamon, H. Ishizaka, M. Mikami, M. Okazaki, Carbon 35, 791 (1997)Google Scholar
  41. 41.
    R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)ADSGoogle Scholar
  42. 42.
    T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, J. Non Cryst. Solids 288, 46 (2001)ADSGoogle Scholar
  43. 43.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 38, 1099 (2000)Google Scholar
  44. 44.
    F. Despetis, K. Barral, L. Kocon, J. Phalippou, J. Sol Gel. Sci. Technnol. 19, 829 (2000)Google Scholar
  45. 45.
    R.W. Pekala, S.T. Mayer, J.F.P.J.L. Kaschmitier, Mrs Proceedings. pp. 1-16. Washington, DC, United States (1994)Google Scholar
  46. 46.
    H.H. Jung, S.W. Hwang, S.H. Hyun, K.H. Lee, G.T. Kim, Desalination 216, 377 (2007)Google Scholar
  47. 47.
    D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42, 2033 (2004)Google Scholar
  48. 48.
    U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, J. Porous. Mater. 4, 281 (1997)Google Scholar
  49. 49.
    M. Glora, M. Wiener, R. Petricevic, J. Fricke, J. Non Cryst. Solids 285, 283 (2001)ADSGoogle Scholar
  50. 50.
    R.W. Pekala, J.C. Farmer, C.T. Alviso, J. Non Cryst. Solids 225, 74 (1998)ADSGoogle Scholar
  51. 51.
    J. Wang, M. Glora, R. Petricevic, R. Saliger, J. Fricke, J. Porous. Mater. 8, 159 (2001)Google Scholar
  52. 52.
    C. Lin, J.A. Ritter, Carbon 38, 849 (2000)Google Scholar
  53. 53.
    J. Feng, C. Zhang, J. Feng, N. Zhao, ACS. Appl. Mater. Interfaces 3, 4796 (2011)Google Scholar
  54. 54.
    J. Wang, M. Chen, C. Wang, J. Wang, J. Zheng, Mater. Lett. 68, 446 (2012)Google Scholar
  55. 55.
    G.P. Wu, J. Yang, C.X. Lu, Mater. Lett. 115, 1 (2014)Google Scholar
  56. 56.
    C. Liang, G. Sha, S. Guo, J. Non Cryst. Solids 271, 167 (2000)ADSGoogle Scholar
  57. 57.
    D. Wu, R. Fu, Microporous Mesoporous Mater. 96, 115 (2006)Google Scholar
  58. 58.
    N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 2430 (2006)Google Scholar
  59. 59.
    R. Fu, B. Zheng, J. Liu, J. Appl. Polym. Sci. 91, 3060 (2010)Google Scholar
  60. 60.
    R. Fu, B. Zheng, J. Liu, Adv. Funct. Mater. 13, 558 (2010)Google Scholar
  61. 61.
    R. Jacobs, Carbon 37, 1199 (1999)Google Scholar
  62. 62.
    H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)Google Scholar
  63. 63.
    T. Yamamoto, T. Sugimoto, H. Tamon, Carbon 40, 1345 (2002)Google Scholar
  64. 64.
    H.K. Wu, X.M. Li, L. Qian, Mater. Sci. Forum 898, 1923 (2017)Google Scholar
  65. 65.
    X. Zhang, Z. Sui, B. Xu, J. Mater. Chem. 21, 6494 (2011)Google Scholar
  66. 66.
    H. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554 (2013)Google Scholar
  67. 67.
    J.L. Kaschmitter, S.T. Mayer, R.W. Pekala, Patent 5,789,338, A1 (1998)Google Scholar
  68. 68.
    N. Job, A. Thery, R. Pirard, Carbon 43, 2481 (2005)Google Scholar
  69. 69.
    R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)ADSGoogle Scholar
  70. 70.
    S.T. Mayer, R.W. Pekala, J.L. Kaschmitter, Cheminform. 24, 446 (1997)Google Scholar
  71. 71.
    I. Najeh, N.B. Mansour, M. Mbarki, A. Houas, J.P. Nogier, L.E. Mir, Solid State Sci. 11, 1747 (2009)ADSGoogle Scholar
  72. 72.
    Y. Zhong, Y. Kong, X. Shen, S. Cui, J. Zhang, Microporous Mesoporous Mater. 172, 182 (2013)Google Scholar
  73. 73.
    V. Drach, M. Wiener, J. Fricke, Int. J. Thermophys. 28, 1542 (2007)ADSGoogle Scholar
  74. 74.
    J. Yang, S. Li, Y. Luo, L. Yan, F. Wang, Carbon 49, 1542 (2011)Google Scholar
  75. 75.
    R. Petrivevic, M. Glora, J. Fricke, Carbon 39, 857 (2001)Google Scholar
  76. 76.
    A.K. Geim, Science 324, 1530 (2009)ADSGoogle Scholar
  77. 77.
    J. Liang, Y. Huang, L. Zhang, Adv. Funct. Mater. 19, 2297 (2010)Google Scholar
  78. 78.
    H.F. Ju, W.L. Song, L.Z. Fan, J. Mater. Chem. A 2, 10895 (2014)Google Scholar
  79. 79.
    K. Guo, Z. Hu, X. Chen, RSC Adv. 5, 5197 (2014)Google Scholar
  80. 80.
    Y. Zhang, W. Fan, Y. Huang, T. Liu, RSC Adv. 5, 1301 (2015)Google Scholar
  81. 81.
    W. Sun, A. Du, J. Tang, J. Sol Gel Sci. Technol. 80, 68 (2016)Google Scholar
  82. 82.
    F. Meng, X. Zhang, Y. Luo, J. Mater. Chem. 21, 18537 (2011)Google Scholar
  83. 83.
    K. Guo, H. Song, L. Zhong, Phys. Chem. Chem. Phys. 16, 11603 (2014)Google Scholar
  84. 84.
    D. Tasis, N. Tagmatarchis, A. Bianco, M.L. Prato, Chem. Rev. 106, 1105 (2006)Google Scholar
  85. 85.
    T. Bordjiba, M. Mohamedi, L.H. Dao, J. Power Sources 172, 991 (2007)ADSGoogle Scholar
  86. 86.
    Y. Tao, C.M. Yang, Langmuir 23, 9155 (2007)Google Scholar
  87. 87.
    J. Biener, M. Stadermann, M. Suss, Energy Environ. Sci. 4, 656 (2011)Google Scholar
  88. 88.
    M. Ciszewski, Eb. Szatkowska, A. Koszorek, M. Majka, J. Mater. Sci. 1 (2017)Google Scholar
  89. 89.
    M.A. Worsley, J.H. Satcher, T.F. Baumann, Langmuir 24, 9763 (2008)Google Scholar
  90. 90.
    M.A. Worsley, T.F. Baumann, Acta Mater. 57, 5131 (2009)Google Scholar
  91. 91.
    M.C. Gutierrez, F. Rubio, F.D. Monte, Chem. Mater. 22, 2711 (2010)Google Scholar
  92. 92.
    L.W. Hrubesh, Patent 20,030,134,916, A1 (2003)Google Scholar
  93. 93.
    H. Cheng, H. Xue, C. Hong, X. Zhang, RSC Adv. 6, 75793 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and StructuresBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations