Thermal Effusivity of Human Fluids
- 14 Downloads
Abstract
In the present study, the thermal effusivities of human fluids, such as human blood serum, urine, saliva and tears, were obtained by the photopyroelectric (PPE) technique in inverse configuration (IPPE). Human blood serum and urine were obtained from studies carried out in a government hospital for public servants in Mexico City, whereas saliva and tears were artificial. Making use of both, the amplitude and phase of the PPE signal, the thermal effusivities of each one of the mentioned human fluids were obtained. In order to obtain them, the experimental PPE data were normalized to the PPE signal with air as sample and the theoretical PPE equation was fitted to the normalized experimental data.
Keywords
Human fluids Photopyroelectric Thermal effusivityNotes
Acknowledgments
The authors are thankful to Ms. Isabel Rojas from Hospital “1o. De octubre” of the ISSSTE and also to CONACYT for the partial economical support from both Project No. 241330 and for postdoctoral fellowship to Mr. José Luis González Domínguez and Mr Hugo Rojas-Chávez. We also thank Ms. Esther Ayala from the Photothermal Techniques Laboratory of Physics Department, CINVESTAV-IPN, for the support to develop the experiments of the present study.
References
- 1.S.W. Shalaby, in Thermal Characterization of Polymeric Materials, ed. by E.A. Turi (Academic Press, New York, 1981), p. 237Google Scholar
- 2.J.D. James, J.A. Spittle, S.G.R. Brown, R.W. Evans, Meas. Sci. Technol. 12, 201 (2001)CrossRefGoogle Scholar
- 3.R. Savino, L. Criscuolo, G.D. Di Martino, S. Mungiguerra, J. Eur. Ceram. Soc. (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.12.043 CrossRefGoogle Scholar
- 4.A. Pinto-Neto, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 41, 9971 (1990)ADSCrossRefGoogle Scholar
- 5.A.O. Guimarães, D.A. Viana, T.C. Cordeiro, J.A. Sampaio, E.C. da Silva, R. Toledo, H.J.P.S. Ribeiro, A.A.G. Carrasquilla, H. Vargas, Mar. Pet. Geol. 43, 121 (2013)CrossRefGoogle Scholar
- 6.J.H. Schön, Physical Properties of Rocks: A Workbook (Elsevier, Oxford, 2011)Google Scholar
- 7.J.P.S. Morais, M. de Freitas Rosa, L.D. Nascimento, Carbohydr. Polym. 91, 229 (2013)CrossRefGoogle Scholar
- 8.A. Aluigi, C. Vineis, A. Ceria, C. Tonin, Compos. A Appl. Sci. Manuf. 39, 126 (2008)CrossRefGoogle Scholar
- 9.L.F. Drummy, D.M. Phillips, M.O. Stone, B.L. Farmer, R.R. Naik, Biomacromolecules 6, 3328 (2005)CrossRefGoogle Scholar
- 10.A. Gijsbertsen, D. Bicanic, J.L.W. Gielen, M. Chirtoc, Infrared Phys. Technol. 45, 93 (2004)ADSCrossRefGoogle Scholar
- 11.A.K. Mahapatra, Y. Lan, D.L. Harris, Int. J. Food Prop. 14, 675 (2011)CrossRefGoogle Scholar
- 12.M. Kobelnilk, G. Guadagnucci-Fontanari, D. Lopes-Cassimiro, C. Augusto-Ribeiro, M. Spirandeli-Crespi, J. Therm. Anal. Calorim. 115, 2045 (2014)CrossRefGoogle Scholar
- 13.H. Kocabiyik, B. Kayisoglu, D. Tezer, Int. J. Food Prop. 12, 277 (2009)CrossRefGoogle Scholar
- 14.M.J. Dennis, Analyst 123, 151R (1998)ADSCrossRefGoogle Scholar
- 15.C.D. Moyes, P.M. Schulte, Principles of Animal Physiology, 2nd edn. (Pearson, Toronto, 2016), pp. 634–667Google Scholar
- 16.IUPS Thermal Commission, Jpn. J. Physiol. 51, 567 (2001)Google Scholar
- 17.M. Wahbah, M. Alhawari, B. Mohammad, M. Ismail, IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 354 (2014)ADSCrossRefGoogle Scholar
- 18.A. Mandelis, M. Zver, J. Appl. Phys. 1, 4421 (1985)ADSCrossRefGoogle Scholar
- 19.Eindhoven University of Technology, Course Book (2009), pp. 1–16Google Scholar
- 20.C.J.M. Lasance, Thermal Effusvitiy (Electronics Cooling, 2007), http://www.electronics-cooling.com/2007/11/thermal-effusivity/. Accessed 1 Feb 2017
- 21.M. Cervantes-Espinosa, F.D.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J.G. Mendoza-Alvarez, J.P. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012)ADSCrossRefGoogle Scholar
- 22.D.L. Phillips, J.L. Pirkle, B.W. Burce, J.T. Bernert Jr., L.O. Henderson, L.L. Needham, Arch. Environ. Contam. Toxicol. 18, 495 (1989)CrossRefGoogle Scholar