Thermal Imaging Using Photoacoustic Microscopy with Different Excitation Wavelengths

  • A. Medina-Perez
  • A. Dominguez-PachecoEmail author
  • C. Hernandez-Aguilar
  • A. Cruz-Orea
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena


The study of structures in different materials is increasingly important. In many cases, these materials have different layers that compose them, and it is not easy to observe or detect some internal structures or damages without destroying the samples. Photothermal (PT) techniques, such as photoacoustic spectroscopy, photoacoustic (PAM) and photopyroelectric microscopies, are valuable nondestructive techniques. PT microscopies allow to make scans of samples in order to obtain their thermal images. In this study, thermal images of two different samples were obtained, by using PAM at different excitation wavelengths.


Photoacoustic microscopy Photothermal techniques Thermal images 



The authors thank the Instituto Politécnico Nacional, through the CONACYT, COFAA, EDI and projects SIP scholarships. Also, Photothermal Techniques Laboratory of Physics Department, CINVESTAV-IPN and Spectroscopy Laboratory, IIM-UNAM are acknowledged for the support to develop the experiments of the present study. We also thank Ing. Esther Ayala, Ing. M. Guerrero, Ing. A. B. Soto, Quim. M. A. Canseco Martínez. One of the authors (A. Cruz-Orea) thanks also the partial financial support from CONACYT Project No. 241330.


  1. 1.
    A. Rosencwaig, A.J. Gersho, Appl. Phys. 47, 64 (1976)CrossRefGoogle Scholar
  2. 2.
    A. Rosencwaig, Phys. Today 28, 23 (1975)CrossRefGoogle Scholar
  3. 3.
    R.S. Quimby, W.M. Yen, J. Appl. Phys. 51, 1780 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    C. Manfredotti, F. Fizzotti, M. Boero, M. Bossi, A. Zanini, Solid State Commun. 98, 655 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    J. Soldner, K. Stephan, Chem. Eng. Prog. Process Intensif. 38, 585 (1999)CrossRefGoogle Scholar
  6. 6.
    S. Qi-Ming, G. Chun-Ming, Z. Bin-Xing, R. Hai-Bo, Chin. Phys. B 19, 118103 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    P.C. Menon, R.N. Rajesh, C. Glorieux, Rev. Sci. Instrum. 80, 054904 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    D. Dadarlat, C. Neamtu, N. Houriez, S. Delenclos, S. Longuemart, A.H. Sahraoui, Eur. Phys. J. Spec. Top. 153, 115 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Thoen, C. Glorieux, Thermochim. Acta 304, 137 (1997)CrossRefGoogle Scholar
  10. 10.
    A. Mandelis, S. Paoloni, L. Nicolaides, Rev. Sci. Instrum. 71, 2440 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A.G. Bell, Philos. Mag. 11, 510 (1881)CrossRefGoogle Scholar
  12. 12.
    J.L. Chávez, Tratamiento digital de imágenes multiespectrales, 2do edición, (U. N. A. M., Instituto de Geofísica, 2010), pp. 12–28Google Scholar
  13. 13.
    T.H. Barringer, V.B. Robinson, Stochastic models of cover class dynamics. [Remote sensing of vegetation], in 15th International Symposium on Remote Sensing of Environment, (Ann Arbor, MI, 11–15 May 1981)Google Scholar
  14. 14.
    W.T. Reeves, ACM Trans. Gr. (TOG) 2, 91–108 (1983)CrossRefGoogle Scholar
  15. 15.
    A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall Inc, Upper Saddle River, 1989)zbMATHGoogle Scholar
  16. 16.
    G. Ramstein, M. Raffy, Int. J. Remote Sens. 10, 1049–1107 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    T.S. Huang (ed.), Image Sequence Analysis, vol. 5 (Springer, Berlin, 2013)Google Scholar
  18. 18.
    W.S. Lu (ed.), Two-Dimensional Digital Filters, vol. 80 (CRC Press, Boca Raton, 1992)zbMATHGoogle Scholar
  19. 19.
    A. Vyas, S. Yu, J. Paik, Multiscale Transforms with Application to Image Processing (Springer, Berlin, 2017)Google Scholar
  20. 20.
    H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Zivkovic, F. Van Der Heijden, Pattern Recognit. Lett. 27, 773 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Mittal, N. Paragios, in Proceedings of the 2004 IEEE Computer Society Conference on CVPR 2004, vol 2 (IEEE, 2004), pp. II–IIGoogle Scholar
  23. 23.
    K. Dralle, M. Rudemo, Can. J. For. Res. 26, 1228 (1996)CrossRefGoogle Scholar
  24. 24.
    H.H. Sherief, F.A. Hamza, H.A. Saleh, Int. J. Eng. Sci. 42, 591 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Opsal, A. Rosencwaig, J. Appl. Phys. 53, 4240 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Balderas-Lopez, A. Mandelis, J. Appl. Phys. 90, 2273 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Y.Q. Song, J.T. Bai, Z.Y. Ren, Acta Mech. 223, 1545 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Rosencwaig, G. Busse, Appl. Phys. Lett. 36, 725 (1980)ADSCrossRefGoogle Scholar
  29. 29.
    A. Rosencwaig, Science 218, 223 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Fan, A. Mandelis, G. Spirou, I. Alex Vitkin, J. Acoust. Soc. Am. 116, 3523 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S. Telenkov, A. Mandelis, B. Lashkari, M. Forcht, J. Appl. Phys. 105, 102029 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    S.A. Telenkov, A. Mandelis, J. Biomed. Opt. 14, 044025 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A. Rosig, Anal. Chem. 47, 592A (1975)CrossRefGoogle Scholar
  34. 34.
    A. Mandelis, Y.C. Teng, B.S.H. Royce, J. Appl. Phys. 50, 7138 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    E. Marín, I. Riech, P. Díaz, J.J. Alvarado-Gil, R. Baquero, J.G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, M. Vargas, J. Appl. Phys. 83, 2604 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalSEPI–ESIME-Zac.Ciudad de MéxicoMéxico
  2. 2.Departamento de FísicaCINVESTAV–IPNCiudad de MéxicoMéxico

Personalised recommendations