Thermohydraulics of TiO2/Water Nanofluid in a Round Tube with Twisted Tape Inserts

  • Smith Eiamsa-ard
  • Kunlanan KiatkittipongEmail author


The influence of TiO2 nanoparticles with different volume concentrations in water on heat transfer, friction and thermal performance is explored, and finite volume method is used to clarify the heat transfer in a tube inserted with twisted tape (TT). In the experiment, swirling tubes are generated by TT insert with the twisted ratio (y/w) of 3.0 in the range of Reynolds number between 5400 and 15,200. The mathematical modeling which involves the prediction of flow behaviors in a tube is also conducted. The concentration of nanofluid (ϕ) was varied from 0.07 % to 0.21 % by volume. The results revealed that TiO2 nanoparticles suspended in water enhanced thermal conductivity, and movement of TiO2 nanoparticles delivered energy exchange. Although an increase of TiO2 concentration led to an increase in friction due to small particles suspending in fluid, the heat transfer and thermal performance could enhance significantly. As compared to pure water, the presence of TT with TiO2 nanoparticles at ϕ = 0.07 %, ϕ = 0.14 % and ϕ = 0.21 % indicated a 0.7 %, 1.7 % and 3.1 % higher thermal performance, respectively. With a higher Reynolds number, the thermal performance would be less pronounced due to high flow friction. From the experimental results, the understanding in relation to the effects of TiO2 concentration and Reynolds number on Nusselt number (Nu), friction factor (f) and thermal performance factor (η) is presented for a wide range of thermophysics and heat transfer application.


Heat exchanger Heat transfer enhancement Nanofluid Titania Twisted tape 



Financial supported by the Thailand Research Fund and Office of the Higher Education Commission (Grant No. MRG6180262) are gratefully acknowledged.


  1. 1.
    S. Jaisankar, T.K. Radhakrishnan, K.N. Sheeba, Sol. Energy 83, 1943–1952 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S. Jaisankar, T.K. Radhakrishnan, K.N. Sheeba, Energy 34, 1054–1064 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Bhattacharyya, S.K. Saha, Exp. Therm Fluid Sci. 42, 154–162 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Saha, S.K. Saha, Exp. Therm. Fluid Sci. 47, 81–89 (2014)CrossRefGoogle Scholar
  5. 5.
    P. Sivashanmugam, S. Suresh, Chem. Eng. Process. 46, 1292–1298 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Guo, M. Xu, L. Cheng, Chem. Eng. Process. Process Intensif. 49, 410–417 (2010)CrossRefGoogle Scholar
  7. 7.
    M.M.K. Bhuiya, M.S.U. Chowdhury, J.U. Ahamed, M.J.H. Khan, M.A.R. Sarkar, M.A. Kalam, H.H. Masjuki, M. Shahabuddin, Int. Commun. Heat Mass Transfer 39, 818–825 (2012)CrossRefGoogle Scholar
  8. 8.
    M.M.K. Bhuiya, J.U. Ahamed, M.S.U. Chowdhury, M.A.R. Sarkar, B. Salam, R. Saidur, H.H. Masjuki, M.A. Kalam, Int. Commun. Heat Mass Transfer 39, 94–101 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Nanan, C. Thianpong, P. Promvonge, S. Eiamsa-ard, Int. Commun. Heat Mass Transfer 52, 106–112 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Syam Sundar, M.K. Singh, Rev. Renew. Sustain. Energy Rev. 20, 23–35 (2013)CrossRefGoogle Scholar
  11. 11.
    M.J. Assael, I.N. Metaxa, K. Kakosimos, D. Constantinou, Int. J. Thermophys. 27, 999–1017 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    G.A. Longo, C. Zilio, Int. J. Thermophys. 34, 1288–1307 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K.V. Sharma, L.S. Sundar, P.K. Sarma, Int. Commun. Heat Mass Transfer 36, 503–507 (2009)CrossRefGoogle Scholar
  14. 14.
    L.S. Sundar, K.V. Sharma, Int. J. Heat Mass Transfer 53, 1409–1416 (2010)CrossRefGoogle Scholar
  15. 15.
    M.T. Naik, G.R. Janardana, L.S. Sundar, Int. Commun. Heat Mass Transfer 46, 13–21 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Suresh, K.P. Venkitaraj, P. Selvakumar, Superlattices Microstruct. 49, 608–622 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Exp. Thermal Fluid Sci. 39, 37–44 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Wongcharee, S. Eiamsa-ard, Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int. Commun. Heat Mass Transfer 38, 742–748 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Eiamsa-Ard, K. Wongcharee, Int. Commun. Heat Mass Transfer 39, 1453–1459 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Wongcharee, S. Eiamsa-ard, Int. Commun. Heat Mass Transfer 39, 251–257 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Int. J. Heat Mass Transfer 50, 2272–2281 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringMahanakorn University of TechnologyBangkokThailand
  2. 2.Department of Chemical Engineering, Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations