Failures of “Meso-Phase” Hypothesis Near Vapor–Liquid Critical Point
Article
First Online:
- 23 Downloads
Abstract
It is shown that the “meso-phase” hypothesis of Woodcock L. V. fails to describe quantitatively and qualitatively the isochoric and isobaric heat capacities, speed of sound, long wavelength limit of the structural factor, isothermal compressibility, density fluctuations, Joule–Thompson coefficient and isothermal throttling coefficient of argon in the “meso-phase” region. It is also shown that VdW-EOS can describe qualitatively the excess Gibbs energy and rigidity of argon near-critical point.
Keyword
Argon Critical point First-order phase transition Heat capacity Phase equilibriumNotes
References
- 1.M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, New York, 1991)Google Scholar
- 2.R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982)zbMATHGoogle Scholar
- 3.A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549 (2002). https://doi.org/10.1016/S0370-1573(02)00219-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.J.V. Sengers, M.A. Anisimov, Comment Gibbs density surface of fluid argon: revised critical parameters, L. V. Woodcock. Int. J. Thermophys. (2014) 35, 1770–1784. Int. J. Thermophys. 36, 3001 (2015). https://doi.org/10.1007/s10765-015-1954-8 ADSCrossRefGoogle Scholar
- 5.J.M.H. Levelt Sengers, Liquidons and gasons; controversies about continuity of states. Phys. A 98, 363 (1979). https://doi.org/10.1016/0378-4371(79)90145-6 CrossRefGoogle Scholar
- 6.J.D. van der Waals, On the continuity of gas and liquid states, (original Ph.D. Thesis Leiden 1873) translated and edited by J. S. Rowlinson. (Dover Inc., New York 1987)Google Scholar
- 7.J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids (Wiley, London, 1954), p. 930zbMATHGoogle Scholar
- 8.L.D. Landau, E.M. Lifshitz, Statistical physics, 3rd edn. (Butterworth-Heinemann, Oxford, 2013)zbMATHGoogle Scholar
- 9.S.M. Walas, Phase equilibria in chemical engineering. Parts 1 and 2 (Butterworth publishers, London, 1985)Google Scholar
- 10.R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The properties of gases and liquids (McGraw-Hill Inc., London, 1977)Google Scholar
- 11.R. Balesku, Equilibrium and non-equilibrium statistical mechanics (Wiley, New York, 1975), p. 405Google Scholar
- 12.D.Y. Ivanov, Critical Behavior of Non-Ideal Systems (WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2008)CrossRefGoogle Scholar
- 13.V.A. Rabinovich, V.V. Sychev, YuE Sheludyak, The regularities of the thermodynamics of critical phenomena in the liquid-gas system. High Temp. 33(2), 293–315 (1995)Google Scholar
- 14.NIST Thermo-physical Properties of Fluid Systems (2017), http://webbook.nist.gov/chemistry/fluid/
- 15.M.I. Bagatskii, A.V. Voronel, V.G. Gusak, Zh Exp, Teor. Fiz. Sov. Phys. JETP 43, 728 (1962)Google Scholar
- 16.M.I. Bagatskii, A.V. Voronel, V.G. Gusak, Sov. Phys. JETP 16, 517 (1963)ADSGoogle Scholar
- 17.C. Tegeler, R. Span, W. Wagner, A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28(3), 779–850 (1999)ADSCrossRefGoogle Scholar
- 18.R. Span, W. Wagner, Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24, 41 (2003)CrossRefGoogle Scholar
- 19.R. Span, W. Wagner, Equations of state for technical applications. III. Results for polar fluids. Int. J. Thermophys. 24, 111 (2003)CrossRefGoogle Scholar
- 20.E.W. Lemmon, R. Span, Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785 (2006)CrossRefGoogle Scholar
- 21.R. Gilgen, R. Kleinrahm, W. Wagner, Measurement and correlation of the (pressure-density-temperature) relation of argon I. The homogeneous gas and liquid regions in the temperature range from 90 K to 340 K at pressures up to 12 MPA. J. Chem. Thermodyn. 26, 383 (1994)CrossRefGoogle Scholar
- 22.R. Gilgen, R. Kleinrahm, W. Wagner, Measurement and correlation of the (pressure-density-temperature) relation of argon II. Saturated-liquid and saturated-vapor densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodyn. 26, 399 (1994)CrossRefGoogle Scholar
- 23.M.N. Berberan-Santos, E.N. Bodunov, L. Pogliani, The van der Waals equation: analytical and approximate solutions. J. Math. Chem. 43, 1437–1457 (2008)MathSciNetCrossRefGoogle Scholar
- 24.D.C. Johnston. Advances in Thermodynamics of the van der Waals Fluid. David C. Johnston. 118 pp. IOP Concise Physics, Morgan & Claypool, San Rafael, CA (2014)Google Scholar
- 25.D.C. Johnston. Thermodynamic Properties of the van der Waals Fluid. arXiv preprint arXiv:1402.1205 (2014)
- 26.L.V. Woodcock, Gibbs density surface of fluid argon: revised critical parameters. Int. J. Thermophys. 35, 1770 (2014). https://doi.org/10.1007/s10765-013-1411-5 ADSCrossRefGoogle Scholar
- 27.I.H. Umirzakov, New comment on Gibbs density surface of fluid argon: revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770–1784. Int. J. Thermophys. 39, 8 (2018). https://doi.org/10.1007/s10765-017-2331-6 ADSCrossRefGoogle Scholar
- 28.L.V. Woodcock, On the interpretation of near-critical gas–liquid heat capacities. Int. J. Thermophys. 38, 139 (2017). https://doi.org/10.1007/s10765-017-2277-8 ADSCrossRefGoogle Scholar
- 29.L.V. Woodcock, Failures of van der Waals’ Equation at the Gas-Liquid Critical Point. Int. J. Thermophys. 39, 120 (2018). https://doi.org/10.1007/s10765-018-2444-6 ADSCrossRefGoogle Scholar
- 30.I.H. Umirzakov, On the Interpretation of Near-Critical Gas–Liquid Heat Capacities by L. V. Woodcock, Int. J. Thermophys. (2017) 38, 139: comments. Int. J. Thermophys. 39, 139 (2018). https://doi.org/10.1007/s10765-018-2414-z CrossRefGoogle Scholar
- 31.A.G. Stoletov, Collected Works, in 4 volumes (Gostekhteorizdat, Moscow, Leningrad, 1939) 1, 276, 307, 333Google Scholar
- 32.M.A. Weinberger, W.G. Schneider, On the liquid-vapor coexistence curve of xenon in the region of the critical temperature. Can. J. Chem. 30, 422 (1952)CrossRefGoogle Scholar
- 33.M.A. Weinberger, W.G. Schneider, On the liquid-vapor coexistence curve of xenon in the region of the critical temperature. Can. J. Chem. 30, 815 (1952)CrossRefGoogle Scholar
- 34.M.A. Weinberger, W.G. Schneider, Density distributions in a vertical tube containing xenon near the critical temperature as measured by a radioactive tracer technique. Can. J. Chem. 30, 847 (1952)CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019