Advertisement

Failures of “Meso-Phase” Hypothesis Near Vapor–Liquid Critical Point

  • I. H. UmirzakovEmail author
Article
  • 23 Downloads

Abstract

It is shown that the “meso-phase” hypothesis of Woodcock L. V. fails to describe quantitatively and qualitatively the isochoric and isobaric heat capacities, speed of sound, long wavelength limit of the structural factor, isothermal compressibility, density fluctuations, Joule–Thompson coefficient and isothermal throttling coefficient of argon in the “meso-phase” region. It is also shown that VdW-EOS can describe qualitatively the excess Gibbs energy and rigidity of argon near-critical point.

Keyword

Argon Critical point First-order phase transition Heat capacity Phase equilibrium 

Notes

References

  1. 1.
    M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, New York, 1991)Google Scholar
  2. 2.
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982)zbMATHGoogle Scholar
  3. 3.
    A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory. Phys. Rep. 368, 549 (2002).  https://doi.org/10.1016/S0370-1573(02)00219-3 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.V. Sengers, M.A. Anisimov, Comment Gibbs density surface of fluid argon: revised critical parameters, L. V. Woodcock. Int. J. Thermophys. (2014) 35, 1770–1784. Int. J. Thermophys. 36, 3001 (2015).  https://doi.org/10.1007/s10765-015-1954-8 ADSCrossRefGoogle Scholar
  5. 5.
    J.M.H. Levelt Sengers, Liquidons and gasons; controversies about continuity of states. Phys. A 98, 363 (1979).  https://doi.org/10.1016/0378-4371(79)90145-6 CrossRefGoogle Scholar
  6. 6.
    J.D. van der Waals, On the continuity of gas and liquid states, (original Ph.D. Thesis Leiden 1873) translated and edited by J. S. Rowlinson. (Dover Inc., New York 1987)Google Scholar
  7. 7.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids (Wiley, London, 1954), p. 930zbMATHGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, Statistical physics, 3rd edn. (Butterworth-Heinemann, Oxford, 2013)zbMATHGoogle Scholar
  9. 9.
    S.M. Walas, Phase equilibria in chemical engineering. Parts 1 and 2 (Butterworth publishers, London, 1985)Google Scholar
  10. 10.
    R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The properties of gases and liquids (McGraw-Hill Inc., London, 1977)Google Scholar
  11. 11.
    R. Balesku, Equilibrium and non-equilibrium statistical mechanics (Wiley, New York, 1975), p. 405Google Scholar
  12. 12.
    D.Y. Ivanov, Critical Behavior of Non-Ideal Systems (WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2008)CrossRefGoogle Scholar
  13. 13.
    V.A. Rabinovich, V.V. Sychev, YuE Sheludyak, The regularities of the thermodynamics of critical phenomena in the liquid-gas system. High Temp. 33(2), 293–315 (1995)Google Scholar
  14. 14.
    NIST Thermo-physical Properties of Fluid Systems (2017), http://webbook.nist.gov/chemistry/fluid/
  15. 15.
    M.I. Bagatskii, A.V. Voronel, V.G. Gusak, Zh Exp, Teor. Fiz. Sov. Phys. JETP 43, 728 (1962)Google Scholar
  16. 16.
    M.I. Bagatskii, A.V. Voronel, V.G. Gusak, Sov. Phys. JETP 16, 517 (1963)ADSGoogle Scholar
  17. 17.
    C. Tegeler, R. Span, W. Wagner, A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28(3), 779–850 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    R. Span, W. Wagner, Equations of state for technical applications. II. Results for nonpolar fluids. Int. J. Thermophys. 24, 41 (2003)CrossRefGoogle Scholar
  19. 19.
    R. Span, W. Wagner, Equations of state for technical applications. III. Results for polar fluids. Int. J. Thermophys. 24, 111 (2003)CrossRefGoogle Scholar
  20. 20.
    E.W. Lemmon, R. Span, Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785 (2006)CrossRefGoogle Scholar
  21. 21.
    R. Gilgen, R. Kleinrahm, W. Wagner, Measurement and correlation of the (pressure-density-temperature) relation of argon I. The homogeneous gas and liquid regions in the temperature range from 90 K to 340 K at pressures up to 12 MPA. J. Chem. Thermodyn. 26, 383 (1994)CrossRefGoogle Scholar
  22. 22.
    R. Gilgen, R. Kleinrahm, W. Wagner, Measurement and correlation of the (pressure-density-temperature) relation of argon II. Saturated-liquid and saturated-vapor densities and vapour pressures along the entire coexistence curve. J. Chem. Thermodyn. 26, 399 (1994)CrossRefGoogle Scholar
  23. 23.
    M.N. Berberan-Santos, E.N. Bodunov, L. Pogliani, The van der Waals equation: analytical and approximate solutions. J. Math. Chem. 43, 1437–1457 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.C. Johnston. Advances in Thermodynamics of the van der Waals Fluid. David C. Johnston. 118 pp. IOP Concise Physics, Morgan & Claypool, San Rafael, CA (2014)Google Scholar
  25. 25.
    D.C. Johnston. Thermodynamic Properties of the van der Waals Fluid. arXiv preprint arXiv:1402.1205 (2014)
  26. 26.
    L.V. Woodcock, Gibbs density surface of fluid argon: revised critical parameters. Int. J. Thermophys. 35, 1770 (2014).  https://doi.org/10.1007/s10765-013-1411-5 ADSCrossRefGoogle Scholar
  27. 27.
    I.H. Umirzakov, New comment on Gibbs density surface of fluid argon: revised Critical Parameters, L. V. Woodcock, Int. J. Thermophys. (2014) 35, 1770–1784. Int. J. Thermophys. 39, 8 (2018).  https://doi.org/10.1007/s10765-017-2331-6 ADSCrossRefGoogle Scholar
  28. 28.
    L.V. Woodcock, On the interpretation of near-critical gas–liquid heat capacities. Int. J. Thermophys. 38, 139 (2017).  https://doi.org/10.1007/s10765-017-2277-8 ADSCrossRefGoogle Scholar
  29. 29.
    L.V. Woodcock, Failures of van der Waals’ Equation at the Gas-Liquid Critical Point. Int. J. Thermophys. 39, 120 (2018).  https://doi.org/10.1007/s10765-018-2444-6 ADSCrossRefGoogle Scholar
  30. 30.
    I.H. Umirzakov, On the Interpretation of Near-Critical Gas–Liquid Heat Capacities by L. V. Woodcock, Int. J. Thermophys. (2017) 38, 139: comments. Int. J. Thermophys. 39, 139 (2018).  https://doi.org/10.1007/s10765-018-2414-z CrossRefGoogle Scholar
  31. 31.
    A.G. Stoletov, Collected Works, in 4 volumes (Gostekhteorizdat, Moscow, Leningrad, 1939) 1, 276, 307, 333Google Scholar
  32. 32.
    M.A. Weinberger, W.G. Schneider, On the liquid-vapor coexistence curve of xenon in the region of the critical temperature. Can. J. Chem. 30, 422 (1952)CrossRefGoogle Scholar
  33. 33.
    M.A. Weinberger, W.G. Schneider, On the liquid-vapor coexistence curve of xenon in the region of the critical temperature. Can. J. Chem. 30, 815 (1952)CrossRefGoogle Scholar
  34. 34.
    M.A. Weinberger, W.G. Schneider, Density distributions in a vertical tube containing xenon near the critical temperature as measured by a radioactive tracer technique. Can. J. Chem. 30, 847 (1952)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ThermophysicsNovosibirskRussia

Personalised recommendations