Advertisement

Volcanic Soils: Inverse Modeling of Thermal Conductivity Data

  • V. R. Tarnawski
  • F. Tsuchiya
  • P. Coppa
  • G. BovesecchiEmail author
Article
  • 23 Downloads

Abstract

Volcanic ash soils are formed from ash and cinder deposits that largely consist of non-crystalline minerals, volcanic glass and organic matter. Their application to engineering ground technology requires a thorough knowledge and good understanding of their historical formation, structure, mineralogy and thermal and hydraulic properties. Consequently, inverse modeling was applied to the thermal conductivity (λ) data of 22 soils from Hokkaido (northern Japan). A large majority of these soils contained volcanic ash that markedly influenced their physical properties. For example, 11 natural soils (volcanic, highland and lowland soils) had average λ values of 0.14 W·m−1·K−1 and 0.52 W·m−1·K−1 at dryness (λdry) and saturation (λsat), respectively. The inverse modeling of λ data revealed that the average λ values of soil solids (λs) and volcanic glass (λvgl) were about 0.48 W·m−1·K−1 and 0.25 W·m−1·K−1, respectively. The influence of organic matter on λs was found to have a minor effect. A reverse analysis of saturated frozen soils revealed that, at − 5 °C, about 87 % of water was converted into ice, i.e., unfrozen water content (θun-w) ≈ 0.13.

Keywords

Allophanes Andosols Kersten function Modeling Soils Thermal conductivity 

List of Symbols

Latin

Exp

Experimental

Ke

Kersten number

m

Mass fraction

M

Number of parameter

n

Porosity

N

Number of measurement

Sr

Degree of saturation

Sat

Saturation

T

Temperature (°C) or (K)

V

Volume (m3)

w

Mass content

Greek

α

Fitting parameter

β

Fitting parameter

θ

Volumetric fraction of water/air content

Θ

Volumetric fraction of mineral content

λ

Thermal conductivity (W·m−1·K−1)

ρ

Density (kg·m−3)

Subscripts

ave

Average

cal

Calculated

dry

Dryness

ds

Dry soil

exp

Experimental

fit

Fitted

fro

Frozen

glass

Glass

i

Ice

max

Maximum

o-m

Organic matter

o-min

Other primary minerals

qtz

Quartz

s

Soil solid

sa

Sand

sat

Saturation

sec-min

Secondary minerals

tot

Total

un-w

Unfrozen water

un

Unfrozen

vgl

Volcanic glass

w

Water

Abbreviations

RMSE

Root-mean-square error

LRGH

Lu–Ren–Gong–Horton

Notes

Acknowledgements

The authors are expressing sincere thanks for Hokkaido University of Education (Hakodate, Japan) and Saint Mary’s University in Halifax (Canada) for supporting this research and also to Mr. Marlon L. McCombie for his comments.

References

  1. 1.
    S. Sasaki, Hydrogen peroxide treatment on typical Hokkaido soils. Soil Sci. Plant Nutr. 6, 106–113 (1961).  https://doi.org/10.1080/00380768.1961.10430935 ADSCrossRefGoogle Scholar
  2. 2.
    G. Bovesecchi, P. Coppa, M. Potenza, A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. Int. J. Thermophys. 38, 68 (2017).  https://doi.org/10.1007/s10765-017-2202-1 ADSCrossRefGoogle Scholar
  3. 3.
    S. Shoji, Mineralogical properties of volcanic ash soils, in Volcanic Ash Soil: Genesis, Properties and Classification, ed. by N. Yoshinaga, Tokyo (1983), pp. 31–72Google Scholar
  4. 4.
    S. Shoji, M. Nanzyo, R.A. Dahlgren, Volcanic Ash Soils: Genesis, Properties and Utilization (Elsevier Science, Amsterdam, 1994), ISBN: 9780444897992Google Scholar
  5. 5.
    M. Nanzyo, Unique properties of volcanic ash soils. Glob. Environ. Res. 6, 99–112 (2002)Google Scholar
  6. 6.
    T. Tazaki, T. Tiba, M. Aratani, M. Miyachi, Structural water in volcanic glass. Clay Clay Miner. 40, 122–127 (1992).  https://doi.org/10.1346/CCMN.1992.0400113 ADSCrossRefGoogle Scholar
  7. 7.
    F. Ugolini, R.A. Dahlgren, Soil development in volcanic ash. Glob. Environ. Res. 6, 69–81 (2002)Google Scholar
  8. 8.
    R.V. Fisher, H.U. Schmincke, Pyroclastic Rocks (Springer, Berlin, 1984).  https://doi.org/10.1007/978-3-642-74864-6 CrossRefGoogle Scholar
  9. 9.
    S. Shoji, J. Masui, Opaline silica of recent volcanic ash soils in Japan. J. Soil Sci. 22, 101–108 (1971).  https://doi.org/10.1111/j.1365-2389.1971.tb01597.x CrossRefGoogle Scholar
  10. 10.
  11. 11.
    T. Maeda, H. Takenaka, B.P. Warkentin, Physical properties of allophane soils, in Advances in Agronomy, ed. by N.C. Brady (1977), pp. 229–264Google Scholar
  12. 12.
    B.P. Warkentin, T. Maeda, Physical properties of allophane soils from the West Indies and Japan. Soil Sci. Soc. Am. J. 38, 372–377 (1974).  https://doi.org/10.2136/sssaj1974.03615995003800020042x ADSCrossRefGoogle Scholar
  13. 13.
    A. Higashi, Thermal conductivity of frozen soil. J. Fac. Sci. U Hokkaido 40, 95–106 (1952)Google Scholar
  14. 14.
    P.H. Cochran, L. Boersma, C.T. Youngberg, Thermal properties of a pumice soil. Soil Sci. Soc. Am. J. 31, 454–459 (1967).  https://doi.org/10.2136/sssaj1967.03615995003100040013x ADSCrossRefGoogle Scholar
  15. 15.
    T. Kasabuchi, The effect of soil moisture on thermal properties in some typical Japanese upland soils. Soil Sci. Plant Nutr. 21, 107–112 (1974).  https://doi.org/10.1080/00380768.1975.10432626 CrossRefGoogle Scholar
  16. 16.
    T. Maeda, K. Soma, K. Ikehata, Thermal properties greatly related to water retention of Kuroboku soils (organo-volcanic ash soils). Trans. JSIDRE 103, 13–21 (1983).  https://doi.org/10.11408/jsidre1965.1983.13 CrossRefGoogle Scholar
  17. 17.
    K. Soma, T. Maeda, Y. Fujiwara, H. Hamada, Heat conduction of volcanic ash soils [Japan]. Soil Phys. Cond. Plant Growth 54, 28–35 (1987)Google Scholar
  18. 18.
    S. Suzuki, K. Soma, J. Kashiwagi, S. Nakagawa, Structure and thermal conductivity of pumice soils deposited in Central Hokkaido. Trans. JSIDRE 213, 331–342 (2001). 10.11408/jsidre1965.2001.331 Google Scholar
  19. 19.
    M. Antilén, M. Escudey, J.E. Förster, N. Moraga, D. Marty, O. Fudym, Application of the hot disc method to the thermophysical characterization of soils. J. Chil. Chem. Soc. 48, 27–29 (2003).  https://doi.org/10.4067/S0717-97072003000300005 CrossRefGoogle Scholar
  20. 20.
    M.C. Herrera, A. Lizcano, J.C. Santamarina, Colombian volcanic ash soils, in 1st International Workshop on Characterisation and Engineering Properties of Natural Soils, 3-4 2385-2410 (2002), ISBN: 978-041540267-5Google Scholar
  21. 21.
    E. Kuznetsova, R. Motenko, Weathering of volcanic ash in the cryogenic zone of Kamchatka, eastern Russia. Clay Miner. 49, 192–212 (2014).  https://doi.org/10.1180/claymin.2014.049.2.04 ADSCrossRefGoogle Scholar
  22. 22.
    C. Clauser, E. Huenges, Thermal conductivity of rocks and minerals, in Rock Physics & Phase Relations: A Handbook of Physical Constants, ed. by J.A. Thomas (1995), pp. 105–126Google Scholar
  23. 23.
    T. Tokoro, S. Shirai, T. Nakamura, T. Ishikawa, Effect of moisture content on thermal conductivity of soils, in Unsaturated Soils: Research & Applications, ed. by N. Khalili, A. Russel, A. Khoshghalb, London (2014)Google Scholar
  24. 24.
    S. Sawada, T. Ohno, Laboratory studies on thermal conductivity of clay, silt and sand, in frozen and unfrozen states, in Fourth Int. Symp. On Ground Freezing, vol. 2 (1985), pp. 53–58, ISBN: 9789061916048Google Scholar
  25. 25.
    S. Suzuki, J. Kashiwagi, S. Nakagawa, K. Soma, Mechanism of hysteresis in thermal conductivity of frozen soils between freezing and thawing processes. Trans. JSIDRE 218, 223–231 (2002).  https://doi.org/10.11408/jsidre1965.2002.223 CrossRefGoogle Scholar
  26. 26.
    T. Momose, T. Kasubuchi, Effect of reduced air pressure on soil thermal conductivity over a wide range of water content and temperature. Eur. J. Soil Sci. 53, 599–608 (2002).  https://doi.org/10.1046/j.1365-2389.2002.00474.x CrossRefGoogle Scholar
  27. 27.
    G. Bovesecchi, P. Coppa, Basic problems in thermal-conductivity measurements of soils. Int. J. Thermophys. 34, 1962–1974 (2013).  https://doi.org/10.1007/s10765-013-1503-2 ADSCrossRefGoogle Scholar
  28. 28.
    M.L. McCombie, V.R. Tarnawski, G. Bovesecchi, P. Coppa, W.H. Leong, Thermal conductivity of pyroclastic soil (Pozzolana) from the environs of Rome. Int. J. Thermophys. 38, 21 (2017).  https://doi.org/10.1007/s10765-016-2161-y ADSCrossRefGoogle Scholar
  29. 29.
    Y. Yamazaki, F. Tsuchiya, O. Tsuji, Measurement and estimation of thermal conductivity of quartz containing frozen and unfrozen soils. Trans. JSIDRE 226, 497–505 (2003).  https://doi.org/10.1007/s10765-016-2161-y CrossRefGoogle Scholar
  30. 30.
    Y. Yamazaki, “Verification and estimation of thermal conductivity of frozen and unfrozen soils containing quartz and organic matter”, Ph.D. Thesis, pp. Iwate University, Japan (2004)Google Scholar
  31. 31.
    T. Kasabuchi, A study on heat conduction in soils. Bull. Nat. Inst. Agric. Sci. B33, 1–54 (1982)Google Scholar
  32. 32.
    O.T. Farouki, Thermal Properties of Soils (Trans Tech Pub, Rockport, 1986)Google Scholar
  33. 33.
    V.R. Tarnawski, M.L. McCombie, W.H. Leong, B. Wagner, T. Momose, J. Schönenberger, Canadian field soils II. Modeling of quartz occurrence. Int. J. Thermophys. 33, 843–863 (2012).  https://doi.org/10.1007/s10765-012-1184-2 ADSCrossRefGoogle Scholar
  34. 34.
    O. Johansen, Thermal Conductivity of Soils, Corps of Engineers U.S. Army, Cold Regions Research and Engineering Laboratory (Hanover, N.H) (1977)Google Scholar
  35. 35.
    S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71, 8–14 (2007).  https://doi.org/10.2136/sssaj2006.0041 ADSCrossRefGoogle Scholar
  36. 36.
    V.R. Tarnawski, T. Momose, W.H. Leong, Performance evaluation of soil thermal conductivity models, in Conference on Thermal and Environmental Issues in Energy Systems (2010)Google Scholar
  37. 37.
    V.R. Tarnawski, M.L. McCombie, W.H. Leong, P. Coppa, S. Corasaniti, G. Bovesecchi, Canadian field soils IV: modeling thermal conductivity at dryness and saturation. Int. J. Thermophys. 39, 35 (2018).  https://doi.org/10.1007/s10765-017-2357-9 ADSCrossRefGoogle Scholar
  38. 38.
    V.R. Tarnawski, T. Momose, W.H. Leong, Assessing the impact of quartz content on the prediction of soil thermal conductivity. Géotechnique 59, 331–338 (2009).  https://doi.org/10.1680/geot.2009.59.4.331 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of EngineeringSaint Mary’s UniversityHalifaxCanada
  2. 2.Zukosha Co. Ltd.ObihiroJapan
  3. 3.Department of Industrial EngineeringUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations