Advertisement

Solution of the Adiabatic Sound Wave Equation as a Nonlinear Least Squares Problem

  • Muhamed BijedićEmail author
  • Sabina Begić
Article
  • 38 Downloads

Abstract

A new method for deriving accurate thermodynamic properties of gases and vapors (the compression factor and heat capacities) from the speed of sound is recommended. A set of PDEs connecting speed of sound with other thermodynamic properties is solved as a nonlinear least squares problem, using a modified Levenberg–Marquardt algorithm. In supercritical domain, boundary values of compression factor are imposed along two isotherms (one slightly above Tc and another several times Tc) and two isochores (one at zero density and another slightly above ρc). In subcritical domain, the upper isochore is replaced by the saturation line, the lower isotherm is slightly above the triple point, and the upper isotherm is slightly below the critical point. Initial values of compression factor inside the domains are obtained from the boundary values by a cubic spline interpolation with respect to density. All the partial derivation with respect to density and temperature, as well as speed of sound interpolation with respect to pressure, is also conducted by a cubic spline. The method is tested with Ar, CH4 and CO2. The average absolute deviation of compression factor and heat capacities is better than 0.002 % and 0.1 %, respectively.

Keywords

Density Heat capacity Least squares Levenberg–Marquardt Speed of sound 

Supplementary material

10765_2018_2479_MOESM1_ESM.txt (69 kb)
Supplementary material 1 (TXT 68 kb)

References

  1. 1.
    M.J. Moran, H.N. Shapiro, Fundamentals of Engineering Thermodynamics (Wiley, Chichester, 2006)Google Scholar
  2. 2.
    J.P.M. Trusler, Physical Acoustics and Metrology of Fluids (Adam Hilger, Bristol, 1991)Google Scholar
  3. 3.
    J.P.M. Trusler, M. Zarari, J. Chem. Thermodyn. 24, 973 (1992)CrossRefGoogle Scholar
  4. 4.
    A.F. Estrada-Alexanders, J.P.M. Trusler, M.P. Zarari, Int. J. Thermophys. 16, 663 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    A.F. Estrada-Alexanders, J.P.M. Trusler, Int. J. Thermophys. 17, 1325 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A.F. Estrada-Alexanders, J.P.M. Trusler, J. Chem. Thermodyn. 29, 991 (1997)CrossRefGoogle Scholar
  7. 7.
    M. Bijedić, N. Neimarlija, Int. J. Thermophys. 28, 268 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bijedić, N. Neimarlija, J. Iran. Chem. Soc. 5, 286 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Bijedić, N. Neimarlija, Lat. Am. Appl. Res. 43, 393 (2013)Google Scholar
  10. 10.
    M. Bijedić, S. Begić, J. Thermodyn. 2014, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    A.F. Estrada-Alexanders, D. Justo, J. Chem. Thermodyn. 36, 419 (2004)CrossRefGoogle Scholar
  12. 12.
    C. de Boor, A Practical Guide to Splines (Springer, New York, 1978)CrossRefGoogle Scholar
  13. 13.
    K. Levenberg, Q. Appl. Math. 2, 164 (1944)MathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963)CrossRefGoogle Scholar
  15. 15.
    J.J. Moré, in Numerical Analysis, Lecture Notes in Mathematics, vol. 630, ed. by G.A. Watson (Springer, Berlin, 1978)Google Scholar
  16. 16.
    V.V. Sychev, The Differential Equations of Thermodynamics (Mir Publishers, Moscow, 1983)Google Scholar
  17. 17.
    D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976)CrossRefGoogle Scholar
  18. 18.
    C. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    J.J. Moré, B.S. Garbow, K.E. Hillstrom, User Guide for MINPACK-1 (Argonne National Laboratory Report ANL-80-74, 1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of TechnologyUniversity of TuzlaTuzlaBosnia and Herzegovina

Personalised recommendations