Localization of Subsurface Defects in Uncoated Aluminum with Structured Heating Using High-Power VCSEL Laser Arrays

  • E. ThielEmail author
  • M. Ziegler
  • T. Studemund
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena


We report on photothermal detection of subsurface defects by coherent superposition of thermal wave fields. This is made possible by structured heating using high-power VCSEL laser arrays whose individual emitter groups can be arbitrarily controlled. In order to locate the defects, we have developed a scanning method based on the continuous wavelet transformation with complex Morlet wavelet using the destructive interference effect of thermal waves. This approach can also be used for thermally very fast and highly reflective materials such as uncoated aluminum. We show that subsurface defects at an aspect ratio of defect width to defect depth down to \( 1/3 \) are still detectable in this material.


Heat diffusion Structured heating Subsurface defects Thermal wave VCSEL Wavelet transformation 


  1. 1.
    Y. Yamada, S. Okawa, Opt. Rev. 21, 185 (2014). CrossRefGoogle Scholar
  2. 2.
    Y. Hoshi, Y. Yamada, J. Biomed. Opt. 21, 091312 (2016). ADSCrossRefGoogle Scholar
  3. 3.
    A. Gibson, H. Dehghani, Philos. Trans. A Math. Phys. Eng. Sci. 367, 3055 (2009). ADSCrossRefGoogle Scholar
  4. 4.
    S.R. Arridge, Philos. Trans. A Math. Phys. Eng. Sci. 369, 4558 (2011). ADSCrossRefGoogle Scholar
  5. 5.
    T. Durduran, R. Choe, W.B. Baker, A.G. Yodh, Rep. Prog. Phys. 73, 076701 (2010). ADSCrossRefGoogle Scholar
  6. 6.
    G. Busse, K.F. Renk, Appl. Phys. Lett. 42, 366 (1983). ADSCrossRefGoogle Scholar
  7. 7.
  8. 8.
    D. Wu, Lockin-Thermography for Non-destructive Testing and Characterization of Materials, In Fakultät Verfahrenstechnik (Universität Stuttgart, Stuttgart, 1996)Google Scholar
  9. 9.
    Y. Wang, P. Kuo, L. Favro, R. Thomas, Review of Progress in Quantitative Nondestructive Evaluation (Springer, Berlin, 1990), pp. 511–516CrossRefGoogle Scholar
  10. 10.
    T. Li, D.P. Almond, D.A.S. Rees, Meas. Sci. Technol. 22, 035701 (2011). ADSCrossRefGoogle Scholar
  11. 11.
    J.-C. Krapez, C. Gruss, R. Hüttner, F. Lepoutre, L. Legrandjacques, La caméra photothermique. I Principe, modélisation, application à la détection de fissures. Instrumentation Mesure Métrologie (I2M) 1, 9–39 (2001) (in french)Google Scholar
  12. 12.
    J.-C. Krapez, F. Lepoutre, R. Hüttner, C. Gruss, J. Legrandjacques, M. Piriou, J. Gros, D. Gente, S. Hermosilla-Lara, P.-Y. Joubert, D. Placko, La caméra photothermique. II Applications industrielles, perspectives d’amélioration par un nouveau traitement d’images. Instrumentation Mesure Métrologie (I2M) 1, 41–67 (2001) (in french)Google Scholar
  13. 13.
    J.R. Lesniak, D.J. Bazile, Forced-Diffusion Thermography Technique and Projector Design (SPIE—The International Society of Optical Engineering, Bellingham, 1996), pp. 210–217Google Scholar
  14. 14.
    J.R. Lesniak, D.J. Bazile, M.J. Zickel, in Thermosense Xx, ed. by J.R. Snell, R.N. Wurzbach (SPIE—The International Society of Optical Engineering, Bellingham, 1998), pp. 325–330CrossRefGoogle Scholar
  15. 15.
    N. Holtmann, K. Artzt, A. Gleiter, H.P. Strunk, G. Busse, QIRT J. 9, 167 (2012). CrossRefGoogle Scholar
  16. 16.
    J.D. Pribe, S.C. Thandu, Z.Z. Yin, E.C. Kinzel, Thermosense Therm. Infrared Appl. XXXVIII 9861, 98610Z (2016). CrossRefGoogle Scholar
  17. 17.
    E. Thiel, M. Kreutzbruck, M. Ziegler, Spatial and temporal control of thermal waves by using DMDs for interference based crack detection, in Proceedings of SPIE 9761, ed. by M.R. Douglass, P.S. King, B.L. Lee (SPIE-International Society of Optical Engineering, Bellingham, 2016).
  18. 18.
    C. Lindquist, A. Pifferi, R. Berg, S. AnderssonEngels, S. Svanberg, Appl. Phys. Lett. 69, 1674 (1996). ADSCrossRefGoogle Scholar
  19. 19.
    A. Knuttel, J.M. Schmitt, J.R. Knutson, Appl. Opt. 32, 381 (1993). ADSCrossRefGoogle Scholar
  20. 20.
    X. Intes, B. Chance, M.J. Holboke, A.G. Yodh, Opt. Express 8, 223 (2001). ADSCrossRefGoogle Scholar
  21. 21.
    B. Chance, K. Kang, L. He, J. Weng, E. Sevick, Proc. Natl. Acad. Sci. USA 90, 3423 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    E. Thiel, M. Kreutzbruck, M. Ziegler, Appl. Phys. Lett. 109, 123504 (2016). ADSCrossRefGoogle Scholar
  23. 23.
    E. Thiel, M. Ziegler, J. Vis. Exp. 123, e55733 (2017). CrossRefGoogle Scholar
  24. 24.
    H. Moench, R. Conrads, C. Deppe, G. Derra, S. Gronenborn, X. Gu, G. Heusler, J. Kolb, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, U. Weichmann, Proc. SPIE 9348, 93480W (2015). ADSCrossRefGoogle Scholar
  25. 25.
    Thyssen Krupp Materials International GmbH, Warmgewalzter unlegierter Baustahl—Werkstoffdatenbank S235JR, S235JRC, S235J2, S235J2C (Thyssen Krupp Materials International GmbH, Essen, 2011)Google Scholar
  26. 26.
    Gleich Aluminium GmbH, EN AW 5754 Datenblatt (2015)Google Scholar
  27. 27.
    S.N. Chesler, S.P. Cram, Anal. Chem. 45, 1354 (1973). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations