Enhanced Transient Hot Bridge Method Using a Finite Element Analysis

  • J. GaiserEmail author
  • M. Stripf
  • F. Henning


This paper presents a new enhanced measuring procedure to determine the direction-dependent thermal diffusivity of anisotropic materials using the transient hot bridge technique. Two measurements with different sensor orientation are performed to ascertain the thermal diffusivities in the three spatial directions. The analysis of the measurement signals combines an analytical evaluation with a finite-element post-diction of the signal. The measurement uncertainty is assessed to 4 %–10 %.


Anisotropic materials Finite element analysis Transient hot bridge Thermal diffusivity Thermal conductivity 



This research was supported by the German Federal Ministry of Education and Research, research Grant (13FH009PX5).


  1. 1.
    U. Hammerschmidt, V. Meier, New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. Int. J. Thermophys. 27, 840–865 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S.E. Gustafsson, E. Karawacki, M.N. Khan, Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J. Phys. D Appl. Phys. 12, 1411–1421 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    R. Model, R. Stosch, U. Hammerschmidt, Virtual experiment design for the transient hot-bridge sensor. Int. J. Thermophys. 28, 1447–1460 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    U. Hammerschmidt, M. Abid, The thermal conductivity of glass-sieves: I liquid saturated frits. Int. J. Thermal Sci. 96, 119–127 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Heinle, Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen (Universität Erlangen-Nürnberg, Diss., 2012)Google Scholar
  6. 6.
    O. Skrabala, Wärmeleitfähige Kunststoffe: Verarbeitungsinduzierte Eigneschaftsbeeinflussung und deren numerische Vorhersage (Universität Stuttgart, Diss., 2016)Google Scholar
  7. 7.
    M. Abid, Thermophysical properties of a moist porous material, dissertation (Technical University, Braunschweig, 2012)Google Scholar
  8. 8.
    Kraft, Gaiser, Stripf, Hesse, Determination of load dependent thermal conductivity of porous adsorbents, in Excerpt from the proceedings of the COMSOL conference Munich (2016)Google Scholar
  9. 9.
    C. Ullrich, T. Bodmer, D6.1 Metalle und Metalllegierungen, in VDI Gesellschaft: VDI-Wärmeatlas, Wiesbaden (Springer, Berlin Heidelberg, 2006) ISBN 978-3-540-25503-1Google Scholar
  10. 10.
    R. Model, U. Hammerschmidt, Numerical methods for the determination of thermal properties by means of transient measurements, in Advanced Computational Methods in Heat Transfer, 5th edn., ed. by B. Suden, U. Hammerschmidt (WIT Press, Ashurst, Southampton, 2000), pp. 407–416Google Scholar
  11. 11.
    X. Li, R. Luo, W. Zhang, H. Liao, Method for measuring thermal contact resistance of graphite thin film materials. Measurement 93, 202–207 (2016)CrossRefGoogle Scholar
  12. 12.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1965)zbMATHGoogle Scholar
  13. 13.
    C. Hübner, P. B. Kempa, D6.2 Polymere in VDI Gesellschaft: VDI-Wärmeatlas, Wiesbaden (Springer Berlin Heidelberg, 2006) ISBN 978-3-540-25503-1Google Scholar
  14. 14.
    Joint Committee for Guides in Metrology, JCGM 100: Evaluation of measurement data—guide to the expression of uncertainty in measurement (2008)Google Scholar
  15. 15.
    S. Lagüela, P. Bison, F. Peron, P. Romagnoni, Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim. Acta 600, 45–51 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Applied Sciences KarlsruheKarlsruheGermany
  2. 2.Institute of Vehicle System TechnologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations