Absorption Coefficient Dispersion in Flash Thermography of Semitransparent Solids

  • Simon J. AltenburgEmail author
  • Raphael Bernegger
  • Rainer Krankenhagen
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena


Pulse and flash thermography are experimental techniques which are widely used in the field of non-destructive testing for materials characterization and defect detection. We recently showed that it is possible to determine quantitatively the thickness of semitransparent polymeric solids by fitting of results of an analytical model to experimental flash thermography data, for both transmission and reflection configuration. However, depending on the chosen experimental configuration, different effective optical absorption coefficients had to be used in the model to properly fit the respective experimental data, although the material was always the same. Here, we show that this effect can be explained by the wavelength dependency of the absorption coefficient of the sample material if a polychromatic light source, such as a flash lamp, is used. We present an extension of the analytical model to describe the decay of the heating irradiance by two instead of only one effective absorption coefficient, greatly extending its applicability. We show that using this extended model, the experimental results from both measurement configurations and for different sample thicknesses can be fitted by a single set of parameters. Additionally, the deviations between experimental and modeled surface temperatures are reduced compared to a single optimized effective absorption coefficient.


Absorptance Dispersion Flash thermography Infrared thermography NDT Semitransparency 


  1. 1.
    M.F. Modest, Radiative Heat Transfer (Elsevier Science, Amsterdam, 2013)CrossRefGoogle Scholar
  2. 2.
    J.R. Howell, M.P. Menguc, R. Siegel, Thermal Radiation Heat Transfer, 5th edn. (Taylor & Francis, Abingdon, 2010)CrossRefGoogle Scholar
  3. 3.
    S. André, B. Rémy, D. Maillet, A. Degiovanni, J.-J. Serra, J. Appl. Phys. 96, 2566 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    I.A. Vitkin, B.C. Wilson, R.R. Anderson, Appl. Opt. 34, 2973 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Jacques, J.S. Nelson, W.H. Wright, T.E. Milner, Appl. Opt. 32, 2439 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Altenburg, H. Weber, R. Krankenhagen, QIRT J. 15, 95 (2017)CrossRefGoogle Scholar
  7. 7.
    B. Majaron, W. Verkruysse, B.S. Tanenbaum, T.E. Milner, J.S. Nelson, Phys. Med. Biol. 47, 1929 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Milanič, I. Serša, B. Majaron, Phys. Med. Biol. 54, 2829 (2009)CrossRefGoogle Scholar
  9. 9.
    S. André, D. Maillet, J.C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms (Wiley, New York, 2000)zbMATHGoogle Scholar
  10. 10.
    A. Salazar, R. Fuente, A. Mendioroz, E. Apiñaniz, R. Celorrio, Int. J. Thermophys. 33, 1887 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. Salazar, A. Mendioroz, E. Apiñaniz, C. Pradere, F. Noël, J.-C. Batsale, Meas. Sci. Technol. 25, 035604 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Goldammer, J. Baumann, in NDE For Health Monitoring and Diagnostics (San Diego, California, United States, 2002), pp. 211–218Google Scholar
  13. 13.
    S.J. Altenburg, R. Krankenhagen, QIRT J. 15, 121 (2017)CrossRefGoogle Scholar
  14. 14.
    S.J. Altenburg, R. Krankenhagen, H. Weber, in Conference QIRT 2016, Documents and sessions presented during the 13th conference QIRT (Gdańsk, Poland, 2016), pp. 71–78Google Scholar
  15. 15.
    Y. Li, R. Umer, A. Isakovic, Y.A. Samad, L. Zheng, K. Liao, RSC Adv. 3, 8849 (2013)CrossRefGoogle Scholar
  16. 16.
    Osram product brochure, XBO—theater lamps. Technology and application (Osram, 2017). Accessed 31 March 2017
  17. 17.
    H. Villinger, Geophysics 50, 1581 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    H. Stehfest, Commun. ACM 13, 47 (1970)CrossRefGoogle Scholar
  19. 19.
    J. Abate, W. Whitt, Informs J. Comput. 18, 408 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9, 112 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Simon J. Altenburg
    • 1
    Email author
  • Raphael Bernegger
    • 1
  • Rainer Krankenhagen
    • 1
  1. 1.Bundesanstalt für Materialforschung und -prüfungBerlinGermany

Personalised recommendations